Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896061

RESUMO

Heat shock transcription factors (HSFs) contribute significantly to thermotolerance acclimation. Here, we identified and cloned a putative HSF gene (HSFA2h) of 1218 nucleotide (acc. no. KP257297.1) from wheat cv. HD2985 using a de novo transcriptomic approach and predicted sHSP as its potential target. The expression of HSFA2h and its target gene (HSP17) was observed at the maximum level in leaf tissue under heat stress (HS), as compared to the control. The HSFA2h-pRI101 binary construct was mobilized in Arabidopsis, and further screening of T3 transgenic lines showed improved tolerance at an HS of 38 °C compared with wild type (WT). The expression of HSFA2h was observed to be 2.9- to 3.7-fold higher in different Arabidopsis transgenic lines under HS. HSFA2h and its target gene transcripts (HSP18.2 in the case of Arabidopsis) were observed to be abundant in transgenic Arabidopsis plants under HS. We observed a positive correlation between the expression of HSFA2h and HSP18.2 under HS. Evaluation of transgenic lines using different physio-biochemical traits linked with thermotolerance showed better performance of HS-treated transgenic Arabidopsis plants compared with WT. There is a need to further characterize the gene regulatory network (GRN) of HSFA2h and sHSP in order to modulate the HS tolerance of wheat and other agriculturally important crops.

2.
J Biomol Struct Dyn ; 41(24): 15682-15690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021361

RESUMO

Advances in the next generation sequencing technologies, genome reduction techniques and bioinformatics tools have given a big impetus to the identification of genome-wide single nucleotide polymorphisms (SNPs) in crops. NGS technologies can make available a large amount of sequence data in a short span of time. The huge data requires detailed bioinformatics analysis steps, including preprocessing, mapping, and identification of sequence variants. A plethora of available software meant for sequence analysis is used for different sequence analysis steps. However, SNPs identification is far more challenging for orphaned crops or non-reference genome crops. The current article reports different steps for in silico SNPs identification in a sequential manner and proposes some mapping approaches using CLC Genomics software that could provide an alternative method for SNPs identification in orphan crops having no reference genome. The three mapping approaches: Common reference map from progenitor genomes (CRMPG), step-wise use of progenitor genomes (SWPG) and de novo assembly of sequence read (DASR) were validated with the dd-RAD sequenced data of two genotypes from Brassica juncea.Communicated by Ramaswamy H. Sarma.


Assuntos
Genoma de Planta , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Genoma de Planta/genética , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Front Plant Sci ; 13: 925688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046583

RESUMO

Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.

4.
Plants (Basel) ; 11(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35890499

RESUMO

Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.

5.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34148873

RESUMO

Rice grain shape and nutritional quality traits have high economic value for commercial production of rice and largely determine the market price, besides influencing the global food demand for high-quality rice. Detection, mapping and exploitation of quantitative trait loci (QTL) associated with kernel elongation and grain quality in Basmati rice is considered as an efficient strategy for improving the kernel elongation and grain quality trait in rice varieties. Genetic information in rice for most of these traits is scanty and needed interventions through the use of molecular markers. A recombinant inbred lines (RIL) population consisting of 130 lines generated from the cross involving Basmati 370, a superior quality Basmati variety and Pusa Basmati 1121, a Basmati derived variety were used to map the QTLs for 9 important grain quality and yield related traits. Correlation studies showed that various components of yield show a significant positive relationship with grain yield. A genetic map was constructed using 70 polymorphic simple sequence repeat (SSR) markers spanning a genetic distance of 689.3 cM distributed over 12 rice chromosomes. Significant variation was observed and showed transgressive segregation for grain quality traits in RIL population. A total of 20 QTLs were identified associated with nine yield and quality traits. Epistatic interactions were also identified for grain quality related traits indicating complex genetic nature inheritance. Therefore, the identified QTLs and flanking marker information could be utilized in the marker-assisted selection to improve kernel elongation and nutritional grain quality traits in rice varieties.


Assuntos
Grão Comestível/genética , Epistasia Genética , Genoma de Planta , Oryza/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Grão Comestível/anatomia & histologia , Grão Comestível/classificação , Marcadores Genéticos , Endogamia/métodos , Repetições de Microssatélites , Oryza/anatomia & histologia , Oryza/classificação , Fenótipo , Melhoramento Vegetal/métodos , Seleção Genética
6.
Front Plant Sci ; 12: 803603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154193

RESUMO

Drought differs from other natural disasters in several respects, largely because of the complexity of a crop's response to it and also because we have the least understanding of a crop's inductive mechanism for addressing drought tolerance among all abiotic stressors. Overall, the growth and productivity of crops at a global level is now thought to be an issue that is more severe and arises more frequently due to climatic change-induced drought stress. Among the major crops, rice is a frontline staple cereal crop of the developing world and is critical to sustaining populations on a daily basis. Worldwide, studies have reported a reduction in rice productivity over the years as a consequence of drought. Plants are evolutionarily primed to withstand a substantial number of environmental cues by undergoing a wide range of changes at the molecular level, involving gene, protein and metabolite interactions to protect the growing plant. Currently, an in-depth, precise and systemic understanding of fundamental biological and cellular mechanisms activated by crop plants during stress is accomplished by an umbrella of -omics technologies, such as transcriptomics, metabolomics and proteomics. This combination of multi-omics approaches provides a comprehensive understanding of cellular dynamics during drought or other stress conditions in comparison to a single -omics approach. Thus a greater need to utilize information (big-omics data) from various molecular pathways to develop drought-resilient crop varieties for cultivation in ever-changing climatic conditions. This review article is focused on assembling current peer-reviewed published knowledge on the use of multi-omics approaches toward expediting the development of drought-tolerant rice plants for sustainable rice production and realizing global food security.

7.
PLoS One ; 15(11): e0241292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33137812

RESUMO

DH (Doubled haploid) is the immortal mapping population and an outcome of single meiotic cycle, contributed from male partner. An improved procedure was developed for high frequency androgenesis in japonica genotypes, K-332 and GS-88 and their F1s. A total of 207 fertile, green, di-haploid plants were generated from K-332 × GS-88 hybrids using the improved anther culture protocol. The investigation was carried out to evaluate callus induction potential and regeneration response for the genotypes and the derived F1s on N6 media and modified N6 media (N6M). Whereas, N6 failed to induce callusing, agarose solidified N6M media supplemented with 4% maltose, growth regulators; NAA (2 mg/l), 2, 4-D (0.5 mg/l), Kinetin (0.5 mg/l), and silver nitrate induced high calli percentage of 27.6% in F1s, 9.5% and 6.7% in GS-88 and K-332 respectively. Murashige and Skoog (MS) media supplemented with 3% sucrose, and the hormonal combination BAP (2 mg/l), Kinetin (1 mg/l) and NAA (1 mg/l) induced high green shoot regeneration rates (0-60.0%). The effect of cold pre-treatment at 4°C and the stage of anther collection and their interaction was studied. The effect of cold pre-treatment (CP) of collected boots at 4°C (for CP2: 2, CP4: 4, CP6: 6 and CP8: 8 days) at different stages of panicle emergence (BES4-6: 4-6, BES7-10: 7-10, BES11-13: 11-13, BES>13: more than 13 inches was worked out in relation to the effect on response of calli induction, albino regeneration, green plant regeneration and number of shoots/green calli. CP referred to the number of days for which the collected boots were incubated before they were inoculated. BES was the length (inches) between flag leaf and penultimate leaf at the time of boot collection. We concluded that CP6 and BES7-10 showed better response to callus proliferation and regeneration of plantlets across genotypes. The appropriate pre-treatment, stage of anther collection and favourable media composition resulted in high calli induction and green plant regeneration rates in recalcitrant japonica genotypes. The modified N6 media resulted into efficient callus induction and is expected to be useful for studies which aim at rapid generation of mapping populations for genetic studies.


Assuntos
Androgênios/genética , Cinetina/genética , Oryza/genética , Reguladores de Crescimento de Plantas/farmacologia , Ácido 2,4-Diclorofenoxiacético/metabolismo , Androgênios/metabolismo , Meios de Cultura , Haploidia , Técnicas In Vitro , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Purinas/metabolismo
8.
Int J Mol Sci ; 21(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640763

RESUMO

Advances in molecular biology including genomics, high-throughput sequencing, and genome editing enable increasingly faster and more precise cultivar development. Identifying genes and functional markers (FMs) that are highly associated with plant phenotypic variation is a grand challenge. Functional genomics approaches such as transcriptomics, targeting induced local lesions in genomes (TILLING), homologous recombinant (HR), association mapping, and allele mining are all strategies to identify FMs for breeding goals, such as agronomic traits and biotic and abiotic stress resistance. The advantage of FMs over other markers used in plant breeding is the close genomic association of an FM with a phenotype. Thereby, FMs may facilitate the direct selection of genes associated with phenotypic traits, which serves to increase selection efficiencies to develop varieties. Herein, we review the latest methods in FM development and how FMs are being used in precision breeding for agronomic and quality traits as well as in breeding for biotic and abiotic stress resistance using marker assisted selection (MAS) methods. In summary, this article describes the use of FMs in breeding for development of elite crop cultivars to enhance global food security goals.


Assuntos
Produtos Agrícolas/genética , Edição de Genes/métodos , Genes de Plantas , Marcadores Genéticos , Genômica/métodos , Fenótipo , Melhoramento Vegetal/métodos , Produtos Agrícolas/metabolismo , Característica Quantitativa Herdável
9.
BMC Plant Biol ; 19(1): 594, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888485

RESUMO

BACKGROUND: Narrow genetic base, complex allo-tetraploid genome and presence of repetitive elements have led the discovery of single nucleotide polymorphisms (SNPs) in Brassica juncea (AABB; 2n = 4x = 36) at a slower pace. Double digest RAD (ddRAD) - a genome complexity reduction technique followed by NGS was used to generate a total of 23 million paired-end reads from three genotypes each of Indian (Pusa Tarak, RSPR-01 and Urvashi) and Exotic (Donskaja IV, Zem 1 and EC287711) genepools. RESULTS: Sequence data analysis led to the identification of 10,399 SNPs in six genotypes at a read depth of 10x coverage among the genotypes of two genepools. A total of 44 hyper-variable regions (nucleotide variation hotspots) were also found in the genome, of which 93% were found to be a part of coding genes/regions. The functionality of the identified SNPs was estimated by genotyping a subset of SNPs on MassARRAY® platform among a diverse set of B. juncea genotypes. SNP genotyping-based genetic diversity and population studies placed the genotypes into two distinct clusters based mostly on the place of origin. The genotypes were also characterized for six morphological traits, analysis of which revealed a significant difference in the mean values between Indian and Exotic genepools for six traits. The association analysis for six traits identified a total of 45 significant marker-trait associations on 11 chromosomes of A- and B- group of progenitor genomes. CONCLUSIONS: Despite narrow diversity, the ddRAD sequencing was able to identify large number of nucleotide polymorphisms between the two genepools. Association analysis led to the identification of common SNPs/genomic regions associated between flowering and maturity traits, thereby underscoring the possible role of common chromosomal regions-harboring genes controlling flowering and maturity in Brassica juncea.


Assuntos
Biologia Computacional/métodos , Genoma de Planta , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem/métodos , Mostardeira/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
10.
Front Genet ; 7: 221, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28083016

RESUMO

Genomic selection (GS) is a promising approach exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. In plant breeding, it provides opportunities to increase genetic gain of complex traits per unit time and cost. The cost-benefit balance was an important consideration for GS to work in crop plants. Availability of genome-wide high-throughput, cost-effective and flexible markers, having low ascertainment bias, suitable for large population size as well for both model and non-model crop species with or without the reference genome sequence was the most important factor for its successful and effective implementation in crop species. These factors were the major limitations to earlier marker systems viz., SSR and array-based, and was unimaginable before the availability of next-generation sequencing (NGS) technologies which have provided novel SNP genotyping platforms especially the genotyping by sequencing. These marker technologies have changed the entire scenario of marker applications and made the use of GS a routine work for crop improvement in both model and non-model crop species. The NGS-based genotyping have increased genomic-estimated breeding value prediction accuracies over other established marker platform in cereals and other crop species, and made the dream of GS true in crop breeding. But to harness the true benefits from GS, these marker technologies will be combined with high-throughput phenotyping for achieving the valuable genetic gain from complex traits. Moreover, the continuous decline in sequencing cost will make the WGS feasible and cost effective for GS in near future. Till that time matures the targeted sequencing seems to be more cost-effective option for large scale marker discovery and GS, particularly in case of large and un-decoded genomes.

11.
Electrophoresis ; 32(16): 2216-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21793000

RESUMO

We apply CE for high-throughput analysis of functional markers for marker-assisted selection in rice. The accuracy, throughput and reproducibility of CE analysis for sequence-tagged site (STS) and simple sequence repeat (SSR) markers for bacterial blight resistance and aroma genes are demonstrated by using a CE system. Multiplex PCR products displayed well-differentiated allelic variants using different STS and SSR markers for identification of xa13, Xa21 and fgr genes using the CE system compared to 1.2% agarose gel images. Moreover, consumption of PCR product is much less in the CE system compared to traditional agarose gel systems. Sample consumption is less than 0.1 µL per analysis, thereby conserving samples for further downstream analysis. Out of 29 genotypes in BC(1)F(3) generation, 16 plants were found homozygous for all the three genes, viz., xa13, Xa21 and fgr. These homozygous lines can be used as potential donors in rice breeding programmes.


Assuntos
Eletroforese Capilar/métodos , Genes de Plantas , Marcadores Genéticos , Ensaios de Triagem em Larga Escala/métodos , Oryza/genética , Repetições de Microssatélites , Oryza/enzimologia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético , Receptores Proteína Tirosina Quinases/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...