Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764601

RESUMO

In a contemporary sustainable economy, innovation is a prerequisite to recycling waste into new efficient materials designed to minimize pollution and conserve non-renewable natural resources. Using an innovative approach to remediating metal-polluted water, in this study, eggshell waste was used to prepare two new low-cost nanoadsorbents for the retrieval of nickel from aqueous solutions. Scanning electron microscopy (SEM) results show that in the first eggshell-zeolite (EZ) adsorbent, the zeolite nanoparticles were loaded in the eggshell pores. The preparation for the second (iron(III) oxide-hydroxide)-eggshell-zeolite (FEZ) nanoadsorbent led to double functionalization of the eggshell base with the zeolite nanoparticles, upon simultaneous loading of the pores of the eggshell and zeolite surface with FeOOH particles. Structural modification of the eggshell led to a significant increase in the specific surface, as confirmed using BET analysis. These features enabled the composite EZ and FEZ to remove nickel from aqueous solutions with high performance and adsorption capacities of 321.1 mg/g and 287.9 mg/g, respectively. The results indicate that nickel adsorption on EZ and FEZ is a multimolecular layer, spontaneous, and endothermic process. Concomitantly, the desorption results reflect the high reusability of these two nanomaterials, collectively suggesting the use of waste in the design of new, low-cost, and highly efficient composite nanoadsorbents for environmental bioremediation.

2.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511624

RESUMO

The prospect of developing soluble and bioavailable Ti(IV) complex forms with physiological substrates, capable of influencing (patho)physiological aberrations, emerges as a challenge in the case of metabolism-related pathologies (e.g., diabetes mellitus 1 and 2). To that end, pH-specific synthetic efforts on binary Ti(IV)-(α-hydroxycarboxylic acid) systems, involving natural physiological chelator ligands (α-hydroxy isobutyric acid, D-quinic acid, 2-ethyl-2-hydroxybutyric acid) in aqueous media, led to the successful isolation of binary crystalline Ti(IV)-containing products. The new materials were physicochemically characterized by elemental analysis, FT-IR, TGA, and X-ray crystallography, revealing in all cases the presence of mononuclear Ti(IV) complexes bearing a TiO6 core, with three bound ligands of variable deprotonation state. Solution studies through electrospray ionization mass spectrometry (ESI-MS) revealed the nature of species arising upon dissolution of the title compounds in water, thereby formulating a solid-state-solution correlation profile necessary for further employment in biological experiments. The ensuing cytotoxicity profile (pre-adipocytes and osteoblasts) of the new materials supported their use in cell differentiation experiments, thereby unraveling their structure-specific favorable effect toward adipogenesis and mineralization through an arsenal of in vitro biological assays. Collectively, well-defined atoxic binary Ti(IV)-hydroxycaboxylato complexes, bearing bound physiological substrates, emerge as competent inducers of cell differentiation, intimately associated with cell maturation, thereby (a) associating the adipogenic (insulin mimetic properties) and osteogenic potential (mineralization) of titanium and (b) justifying further investigation into the development of a new class of multipotent titanodrugs.


Assuntos
Ácidos Carboxílicos , Titânio , Ligantes , Titânio/farmacologia , Titânio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Diferenciação Celular , Ácidos Carboxílicos/química , Adipócitos , Cristalografia por Raios X
3.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806176

RESUMO

The plethora of flavonoid antioxidants in plant organisms, widespread in nature, and the appropriate metal ions known for their influence on biological processes constitute the crux of investigations toward the development of preventive metallodrugs and therapeutics in several human pathophysiologies. To that end, driven by the need to enhance the structural and (bio)chemical attributes of the flavonoid chrysin, as a metal ion complexation agent, thereby rendering it bioavailable toward oxidative stress, synthetic efforts in our lab targeted ternary Cr(III)-chrysin species in the presence of auxiliary aromatic N,N'-chelators. The crystalline metal-organic Cr(III)-chrysin-L (L = bipyridine (1) and phenanthroline (2)) compounds that arose were physicochemically characterized by elemental analysis, FT-IR, UV-Visible, ESI-MS, luminescence, and X-ray crystallography. The properties of these compounds in a solid state and in solution formulate a well-defined profile for the two species, thereby justifying their further use in biological experiments, intimately related to cellular processes on oxidative stress. Experiments in C2C12 myoblasts at the cellular level (a) focus on the antioxidant capacity of the Cr(III)-complexed flavonoids, emphasizing their distinct antiradical activity under oxidative stress conditions, and (b) exemplify the importance of structural speciation in Cr(III)-flavonoid interactions, thereby formulating correlations with the antioxidant activity of a bioavailable flavonoid toward cellular pathophysiologies, collectively supporting flavonoid introduction in new metallo-therapeutics.


Assuntos
Antioxidantes , Cromo , Antioxidantes/farmacologia , Quelantes/química , Cromo/química , Flavonoides/química , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201755

RESUMO

Diabetes mellitus is a debilitating disease, plaguing a significant number of people around the globe. Attempts to develop new drugs on well-defined atoxic metalloforms, which are capable of influencing fundamental cellular processes overcoming insulin resistance, has triggered an upsurge in molecular research linked to zinc metallodrugs. To that end, meticulous efforts were launched toward the design and synthesis of materials with insulin mimetic potential. Henceforth, trigonelline and N-(2-hydroxyethyl)-iminodiacetic acid (HEIDAH2) were selected as organic substrates seeking binding to zinc (Zn(II)), with new crystalline compounds characterized by elemental analysis, FT-IR, X-rays, thermogravimetry (TGA), luminescence, NMR, and ESI-MS spectrometry. Physicochemical characterization was followed by in vitro biochemical experiments, in which three out of the five zinc compounds emerged as atoxic, exhibiting bio-activity profiles reflecting enhanced adipogenic potential. Concurrently, well-defined qualitative-quantitative experiments provided links to genetic loci responsible for the observed effects, thereby unraveling their key involvement in signaling pathways in adipocyte tissue and insulin mimetic behavior. The collective results (a) signify the quintessential role of molecular studies in unearthing unknown facets of pathophysiological events in diabetes mellitus II, (b) reflect the close associations of properly configured molecular zincoforms to well-defined biological profiles, and (c) set the stage for further physicochemical-based development of efficient zinc antidiabetic metallodrugs.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia , Insulina/farmacologia , Compostos Organometálicos/farmacocinética , Zinco/química , Células 3T3-L1 , Animais , Hipoglicemiantes/farmacologia , Camundongos , Transdução de Sinais
5.
Environ Res ; 197: 110949, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33716031

RESUMO

In this study, the exposome paradigm has been applied on a mother-child cohort adopting an optimised untargeted metabolomics approach for human urine followed by advanced bioinformatics analysis. Exposome-wide association algorithms were used to draw links between in utero co-exposure to metals and phthalates, metabolic pathways deregulation, and clinically observed phenotypes of neurodevelopmental disorders such as problems in linguistic, motor development and cognitive capacity. Children (n = 148) were tested at the first and second year of their life using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Their mothers had been exposed to metals and phthalates during the pregnancy, according to human biomonitoring results from previously performed studies. Untargeted metabolomics analysis of biobanked urine samples from the mothers was performed using a combination of the high throughput analytical methods liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). Most perturbed metabolic pathways from co-exposure heavy metals and phthalates were pathways related to the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation, indicating the possibility of disruption of mitochondrial respiration. Overproduction of reactive oxygen species (ROS); the presence of glutathione peroxidase 3 (GPx3) during pregnancy and presence of glutathione peroxidase 1 (GPx1) in the umbilical cord were linked to verbal development problems. Another finding of the study is that in real life, adverse outcomes occur as a combination of environmental and social factors, all of them acting synergistically towards the deployment of an observed phenotype. Finally, the two-steps association process (exposure to pathways and pathways to adverse outcomes) was able to (a) provide associations that are not evident by directly associating exposure to outcomes and (b) provides additional insides on the mechanisms of environmental disease.


Assuntos
Expossoma , Metais Pesados , Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Desenvolvimento Infantil , Estudos de Coortes , Exposição Ambiental , Feminino , Humanos , Lactente , Metais Pesados/toxicidade , Mães , Gravidez
6.
Toxicol Rep ; 7: 1469-1479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194559

RESUMO

Exposure to particulate matter (PM) is one of the most important environmental issues in Europe with major health impact. Various sizes of PM are suspended in the atmosphere and contributes to ambient air pollution. The current study aimed to explore the differential gene expression in blood, and the effect on the respective biological signaling pathways in Wistar rats, after exposure to PM2.5 and PM1 ambient air particles for an eight-week period. A control group was included with animals breathing non-filtered atmospheric air. In parallel, filtered PM2.5 and PM1 was collected in separate samplers. The results after whole genome microarray analysis showed 23 differentially expressed genes (DEGs) between control and PM2.5 group. In addition, pairwise comparison between control and PM1 group displayed 5635 DEGs linked to 69 biological pathways involved in inflammatory response, cell cycle and carcinogenicity. The smaller the size of the inhaled particles, the more gene alterations are triggered compared to non-filtered air group. More specifically, in inflammation signaling procedures differentially regulated gene expression was shown for interleukin-4 (IL-4), IL-7, IL-1, IL-5, IL-9, IL-6 and IL-2. We have identified that RASGFR1, TRIM65, TRIM33, PLEKHB1, CAR4, S100A8, S100A9, ALPL, NP4 and the PROK2 genes are potential targets for the development of adverse outcome pathways (AOPs) due to "real-life" exposure of Wistar rats. Particle measurements during the exposure period showed elevated concentrations of Fe, Mn and Zn in both PM1 and PM2.5 filter fractions, and of Cu in PM2.5. In addition, water-soluble concentration of metals showed significant differences between PM1 and PM2.5 fractions for V, Zn, As, Pb and Mn. In summary, in this study specific gene biomarkers of exposure to ambient air have been identified and heavy metals that are possibly linked to their altered regulation have been found. The results of this research will pave the way for the development of novel AOPs concerning the health effects of the environmental pollution.

7.
J Inorg Biochem ; 213: 111271, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33069945

RESUMO

Targeted tissue drug delivery is a challenge in contemporary nanotechnologically driven therapeutic approaches, with the interplay interactions between nanohost and encapsulated drug shaping the ultimate properties of transport, release and efficacy of the drug at its destination. Prompted by the need to pursue the synthesis of such hybrid systems, a family of modified magnetic core-shell mesoporous silica nano-formulations was synthesized with encapsulated quercetin, a natural flavonoid with proven bioactivity. The new nanocarriers were produced via the sol-gel process, using tetraethoxysilane as a precursor and bearing a magnetic core of surface-modified monodispersed magnetite colloidal superparamagnetic nanoparticles, subsequently surface-modified with polyethylene glycol 3000 (PEG3k). The arising nano-formulations were evaluated for their textural and structural properties, exhibiting enhanced solubility and stability in physiological media, as evidenced by the loading capacity, entrapment efficiency results and in vitro release studies of their load. Guided by the increased bioavailability of quercetin in its encapsulated form, further evaluation of the biological activity of the magnetic as well as non-magnetic core-shell nanoparticles, pertaining to their anti-amyloid and antioxidant potential, revealed interference with the aggregation of ß-amyloid peptide (Aß) in Alzheimer's disease, reduction of Aß cellular toxicity and minimization of Aß-induced Reactive Oxygen Species (ROS) generation. The data indicate that the biological properties of released quercetin are maintained in the presence of the host nanocarriers. Collectively, the findings suggest that the emerging hybrid nano-formulations can function as efficient nanocarriers of hydrophobic natural flavonoids in the development of multifunctional nanomaterials toward therapeutic applications.


Assuntos
Amiloide/antagonistas & inibidores , Antioxidantes/farmacologia , Magnetismo , Nanopartículas/química , Quercetina/farmacologia , Dióxido de Silício/química , Animais , Disponibilidade Biológica , Células Cultivadas , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Microscopia Eletrônica de Transmissão , Porosidade , Quercetina/química , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
J Inorg Biochem ; 199: 110778, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31442839

RESUMO

In this work novel magnetic cationic liposomal nanoformulations were synthesized for the encapsulation of a crystallographically defined ternary V(IV)-curcumin-bipyridine (VCur) complex with proven bioactivity, as potential anticancer agents. The liposomal vesicles were produced via the thin film hydration method employing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP) and egg phosphatidylcholine lipids and were magnetized through the addition of citric acid surface-modified monodispersed magnetite colloidal magnetic nanoparticles. The obtained nanoformulations were evaluated for their structural and textural properties and shown to have exceptional stability and enhanced solubility in physiological media, demonstrated by the entrapment efficiency and loading capacity results and the in vitro release studies of their cargo. Furthermore, the generated liposomal formulations preserved the superparamagnetic behavior of the employed magnetic core maintaining the physicochemical and morphological requirements for targeted drug delivery applications. The novel nanomaterials were further biologically evaluated for their DNA interaction potential and were found to act as intercalators. The findings suggest that the positively charged magnetic liposomal nanoformulations can generate increased concentration of their cargo at the DNA site, offering a further dimension in the importance of cationic liposomes as nanocarriers of hydrophobic anticancer metal ion complexes for the development of new multifunctional pharmaceutical nanomaterials with enhanced bioavailability and targeted antitumor activity.


Assuntos
Antineoplásicos/química , Curcumina/química , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Vanádio/química , Antineoplásicos/administração & dosagem , DNA/química , Estabilidade de Medicamentos , Desnaturação de Ácido Nucleico , Solubilidade
9.
Curr Med Chem ; 26(4): 607-623, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29149832

RESUMO

Tumor cell chemoresistance is a major challenge in cancer therapeutics. Major select metal-based drugs are potent anticancer mediators yet they exhibit adverse sideeffects and are efficient against limited types of malignancies. A need, therefore, arises for novel metallodrugs with improved efficacy and decreased toxicity. Enhancement of antitumor drugs based on anticancer metals is currently a very active research field, with considerable efforts having been made toward elucidating the mechanisms of immune action of complex metalloforms and optimizing their immunoregulatory bioactivity through appropriate synthetic structural modification(s) and encapsulation in suitable nanocarriers, thereby enhancing their selectivity, specificity, stability, and bioactivity. In that respect, comprehending the molecular factors involved in drug resistance and immune response may help us develop new approaches toward more promising chemotherapies, reducing the rate of relapse and overcoming chemoresistance. In this review, a) molecular immunerelated mechanisms in the tumor microenvironment, responsible for lower drug sensitivity and tumor relapse, along with b) strategies for reversing drug resistance and targeting immunosuppressive tumor networks, while concurrently optimizing the design of complex metalloforms bearing anti-tumor activity, are discussed in an effort to identify and overcome chemoresistance mechanisms for effective tumor immunotherapeutic approaches.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Imunossupressores/química , Metais/química , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Complexos de Coordenação/efeitos adversos , Complexos de Coordenação/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/farmacologia , Estrutura Molecular , Terapia de Alvo Molecular/métodos , Nanopartículas/química , Transdução de Sinais , Relação Estrutura-Atividade , Microambiente Tumoral
10.
J Inorg Biochem ; 176: 24-37, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28843964

RESUMO

The advent of biodegradable nanomaterials with enhanced antibacterial activity stands as a challenge to the global research community. In an attempt to pursue the development of novel antibacterial medicinal nanotechnology, we herein a) synthesized ionic-gelated chitosan nanoparticles, b) compared and evaluated the antibacterial activity of essential oils extracted from nine different herbs (Greek origin) and their combinations with a well-defined antibacterial Zn(II)-Schiff base compound, and c) encapsulated the most effective hybrid combination of Zn(II)-essential oils inside the chitosan matrix, thereby targeting well-formulated nanoparticles of distinct biological impact. The empty and loaded chitosan nanoparticles were physicochemically characterized by FT-IR, Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), with the entrapment and drug release studies being conducted through UV-Visible and atomic absorption techniques. The antimicrobial properties of the novel hybrid materials were demonstrated against Gram positive (S. aureus, B. subtilis, and B. cereus) and Gram negative (E. coli and X. campestris) bacteria using modified agar diffusion methods. The collective physicochemical profile of the hybrid Zn(II)-essential oil cocktails, formulated so as to achieve optimal activity when loaded to chitosan nanoparticles, signifies the importance of design in the development of efficient nanomedicinal pharmaceuticals a) based on both natural products and biogenic metal ionic cofactors, and b) targeting bacterial infections and drug resistance.


Assuntos
Antibacterianos , Quitosana , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Óleos Voláteis , Zinco , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Bases de Schiff/química , Bases de Schiff/farmacologia , Zinco/química , Zinco/farmacologia
11.
Comput Struct Biotechnol J ; 15: 104-116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28138367

RESUMO

The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.

12.
Oxid Med Cell Longev ; 2016: 4013639, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27190573

RESUMO

Over the last decade, a diverse spectrum of vanadium compounds has arisen as anti-inflammatory therapeutic metallodrugs targeting various diseases. Recent studies have demonstrated that select well-defined vanadium species are involved in many immune-driven molecular mechanisms that regulate and influence immune responses. In addition, advances in cell immunotherapy have relied on the use of metallodrugs to create a "safe," highly regulated, environment for optimal control of immune response. Emerging findings include optimal regulation of B/T cell signaling and expression of immune suppressive or anti-inflammatory cytokines, critical for immune cell effector functions. Furthermore, in-depth perusals have explored NF-κB and Toll-like receptor signaling mechanisms in order to enhance adaptive immune responses and promote recruitment or conversion of inflammatory cells to immunodeficient tissues. Consequently, well-defined vanadium metallodrugs, poised to access and resensitize the immune microenvironment, interact with various biomolecular targets, such as B cells, T cells, interleukin markers, and transcription factors, thereby influencing and affecting immune signaling. A synthetically formulated and structure-based (bio)chemical reactivity account of vanadoforms emerges as a plausible strategy for designing drugs characterized by selectivity and specificity, with respect to the cellular molecular targets intimately linked to immune responses, thereby giving rise to a challenging field linked to the development of immune system vanadodrugs.


Assuntos
Sistema Imunitário/patologia , Inflamação/imunologia , Vanádio/toxicidade , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Humanos , Sistema Imunitário/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
13.
J Phys Chem B ; 120(18): 4258-67, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27065050

RESUMO

The interaction of human serum albumin (HSA) with amphiphilic block copolymer Pluronic F127 has been investigated by several physical methods. Interest in studying this system stems from a broad range of bioactivities involving both macromolecules. Serum albumins constitute a significant class of proteins in the circulatory system, acting as carriers for a wide spectrum of compounds or assemblies. Pluronic block copolymers have revealed their capacity to ferry a variety of biologically active compounds. Circular dichroism, rheological measurements, and differential scanning microcalorimetry (µDSC) were employed to get insight into the interaction betweeen the two macromolecules. The results reveal that Pluronic F127 induces conformational changes to albumin if it is organized in a micellar form, while albumin influences the self-assembly of Pluronic F127 into micelles or gels. F127 micelles, however, induce smaller conformational changes compared to ionic surfactants. The µDSC thermograms obtained for HSA and/or F127 show that HSA shifts the critical micellar temperature (cmt) to lower values, while concurrently the HSA denaturation behavior is influenced by F127, depending on its concentration. Rheological measurements on solutions of F127 17% have shown that a sol-to-gel transition occurs at higher temperatures in the presence of HSA and the resulting gel is weaker. The global profile on HSA/F127 systems was complemented by local information provided by EPR measurements. A series of X-band EPR experiments was performed with spin probes 4-(N,N'-dimethyl-N-hexadecyl)ammonium-2,2',6,6'-tetramethylpiperidine-1-oxyl iodide (CAT16) and 5-doxyl stearic acid (5-DSA). These spin probes bind to albumin sites and are sensitive to phase transformations in Pluronic block copolymer solutions. For a given F127 concentration, the spin probe binds only to HSA below cmt and migrates to the F127 micelles above cmt. The collective data suggest soft interactions between the macromolecules, with the emerging results projecting potential applications linked to reaching optimal conditions for certain drug formulations.


Assuntos
Poloxâmero/química , Albumina Sérica Humana/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Géis/química , Humanos , Micelas , Poloxâmero/metabolismo , Reologia , Albumina Sérica Humana/metabolismo , Temperatura , Termodinâmica
14.
Int J Biochem Cell Biol ; 74: 121-34, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26916505

RESUMO

Epithelial to mesenchymal transition (EMT) plays a key role in tumor progression and metastasis as a crucial event for cancer cells to trigger the metastatic niche. Transforming growth factor-ß (TGF-ß) has been shown to play an important role as an EMT inducer in various stages of carcinogenesis. Previous reports had shown that antitumor vanadium inhibits the metastatic potential of tumor cells by reducing MMP-2 expression and inducing ROS-dependent apoptosis. However, the role of vanadium in (TGF-ß)-induced EMT remains unclear. In the present study, we report for the first time on the inhibitory effects of vanadium on (TGF-ß)-mediated EMT followed by down-regulation of ex vivo cancer stem cell markers. The results demonstrate blockage of (TGF-ß)-mediated EMT by vanadium and reduction in the mitochondrial potential of tumor cells linked to EMT and cancer metabolism. Furthermore, combination of vanadium and carboplatin (a) resulted in synergistic antitumor activity in ex vivo cell cultures, and (b) prompted G0/G1 cell cycle arrest and sensitization of tumor cells to carboplatin-induced apoptosis. Overall, the findings highlight the multifaceted antitumor action of vanadium and its synergistic antitumor efficacy with current chemotherapy drugs, knowledge that could be valuable for targeting cancer cell metabolism and cancer stem cell-mediated metastasis in aggressive chemoresistant tumors.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Vanádio/farmacologia , Células A549 , Linhagem Celular Tumoral , Sinergismo Farmacológico , Citometria de Fluxo , Imunofluorescência , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos
15.
Amino Acids ; 48(3): 849-858, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26597796

RESUMO

Natural products derived from medicinal plants have gained an important role in drug discovery due to their complex and abundant composition of secondary metabolites, with their structurally unique molecular components bearing a significant number of stereo-centers exhibiting high specificity linked to biological activity. Usually, the extraction process of natural products involves various techniques targeting separation of a specific class of compounds from a highly complex matrix. Aiding the process entails the use of well-defined and selective molecular extractants with distinctly configured structural attributes. Calixarenes conceivably belong to that class of molecules. They have been studied intensely over the years in an effort to develop new and highly selective receptors for biomolecules. These macrocycles, which display remarkable structural architectures and properties, could help usher a new approach in the efficient separation of specific classes of compounds from complex matrices in natural products. A simple and rapid such extraction method is presented herein, based on host-guest interaction(s) between a calixarene synthetic receptor, 4-tert-butyl-calix[6]arene, and natural biomolecular targets (amino acids and peptides) from Helleborus purpurascens and Viscum album. Advanced physicochemical methods (including GC-MS and chip-based nanoESI-MS analysis) suggest that the molecular structure and specifically the calixarene cavity size are closely linked to the nature of compounds separated. Incorporation of biomolecules and modification of the macrocyclic architecture during separation were probed and confirmed by scanning electronic microscopy and atomic force microscopy. The collective results project calixarene as a promising molecular extractant candidate, facilitating the selective separation of amino acids and peptides from natural products.


Assuntos
Produtos Biológicos/isolamento & purificação , Fracionamento Químico/métodos , Extratos Vegetais/isolamento & purificação , Plantas Medicinais/química , Produtos Biológicos/química , Calixarenos/química , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/química
16.
Int J Mol Sci ; 16(1): 1691-710, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25590298

RESUMO

Over the past years, advances in cancer immunotherapy have resulted in innovative and novel approaches in molecular cancer diagnostics and cancer therapeutic procedures. However, due to tumor heterogeneity and inter-tumoral discrepancy in tumor immunity, the clinical benefits are quite restricted. The goal of this review is to evaluate the major cytokines-interleukins involved in cancer immunotherapy and project their basic biochemical and clinical applications. Emphasis will be given to new cytokines in pre-clinical development, and potential directions for future investigation using cytokines. Furthermore, current interleukin-based approaches and clinical trial data from combination cancer immunotherapies will also be discussed. It appears that continuously increasing comprehension of cytokine-induced effects, cancer stemness, immunoediting, immune-surveillance as well as understanding of molecular interactions emerging in the tumor microenvironment and involving microRNAs, autophagy, epithelial-mesenchymal transition (EMT), inflammation, and DNA methylation processes may hold much promise in improving anti-tumor immunity. To this end, the emerging in-depth knowledge supports further studies on optimal synergistic combinations and additional adjuvant therapies to realize the full potential of cytokines as immunotherapeutic agents.


Assuntos
Imunoterapia/métodos , Interleucinas/imunologia , Interleucinas/uso terapêutico , Neoplasias/terapia , Animais , Metilação de DNA , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucinas/genética , MicroRNAs/genética , MicroRNAs/imunologia , Neoplasias/genética , Neoplasias/imunologia , Microambiente Tumoral
17.
J Inorg Biochem ; 145: 51-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25634813

RESUMO

Neurodegenerative diseases entail deeply complex processes, intimately associated with progressive brain damage reflecting cellular demise. Biochemical reactivity linked to such processes in Alzheimer's disease involves, among others, metal-induced oxidative stress contributing to neuronal cell death. Prominent among redox active metals inducing oxidative stress is Cu(II). Poised to develop molecular technology counteracting oxidative stress, efforts were launched to prepare bioactive hybrid nanoparticles, capable of working as host-carriers of potent antioxidants, such as the natural flavonoid quercetin. Employing synthetic protocols consistent with the assembly of silica nanoparticles, PEGylated and CTAB-modified materials were synthesized. Subsequent concentration-dependent loading of quercetin led to well-defined molecular carriers, the antioxidant efficiency of which was determined through drug release studies using UV-visible spectroscopy. The physicochemical characterization (elemental analysis, particle size, z-potential, FT-IR, thermogravimetric analysis, scanning electron microscopy) of the empty and loaded silica nanoparticles led to the formulation of optimized material linked to the delivery of the encapsulated antioxidant to primary rat hippocampal cultures under oxidative stress. Entrapment and drug release studies showed a) the competence of hybrid nanoparticles as far as the loading capacity in quercetin (concentration dependence), b) congruence with the physicochemical features determined, and c) the release profile of the nanoparticle load under oxidative stress in neuronal cultures. The bio-activity profile of quercetin nanoparticles in a neurodegenerative environment brought on by Cu(II) a) denotes the improved specificity of antioxidant reactivity counteracting oxidative stress, and b) sets the stage for the development of molecular protection and preventive medical nanotechnology of relevance to neurodegenerative Alzheimer's disease.


Assuntos
Cobre/toxicidade , Nanopartículas/química , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/química , Dióxido de Silício/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/prevenção & controle , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
18.
J Phys Chem B ; 118(38): 11238-52, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25185116

RESUMO

In this work, we present evidence on the suitability of spin probes to report on the thermal treatment of bovine serum albumin (BSA), in the temperature range 293-343 K, and indirectly monitor the release of sodium dodecyl sulfate (SDS) from its complex with BSA using a covalent gel with ß-cyclodextrin (ß-CD) in the network. The spin probes used, 5- and 7-doxyl-stearic acids (5-DSA, 7-DSA) or 4-(N,N'-dimethyl-N-hexadecyl)ammonium-2,2',6,6'-tetramethylpiperidine-1-oxyl iodide (CAT16), present similar, fatty acid-like structural features. Their continuous wave electron paramagnetic resonance (CW-EPR) spectra, however, reflect different dynamics when complexed with BSA: a restricted motion for 5-DSA, almost nonsensitive to the heating/cooling cycle, and a faster temperature-dependent dynamic motion for CAT16. Molecular docking allows us to rationalize these results by revealing the different binding modes of 5-DSA and CAT16. The EPR data on the temperature effect on BSA are supported by circular dichroism results projecting recovery, upon cooling, of the initial binding ability of BSA for samples heated to 323 K. The interactions occurring in BSA/SDS/ß-CD systems are investigated by CW-EPR and FT-ESEEM spectroscopies. It is found that the covalent gel containing ß-CD can efficiently remove SDS from the BSA/SDS complex. The gel is not permeable to BSA but it can encapsulate SDS, thus yielding the free protein in solution and allowing recovery of the native protein conformation. Collectively, the accrued knowledge supports potential applications in protein purification biotechnological processes.


Assuntos
Sondas Moleculares , Desnaturação Proteica , Soroalbumina Bovina/química , Dodecilsulfato de Sódio/química , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica , Temperatura Alta , Soroalbumina Bovina/isolamento & purificação
19.
PLoS One ; 8(9): e73616, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040001

RESUMO

Recent studies have suggested that aberrant K-ras signaling is responsible for triggering immunological responses and inflammation-driven tumorigenesis. Interleukins IL-17, IL-22, and IL-23 have been reported in various types of malignancies, but the exact mechanistic role of these molecules remains to be elucidated. Given the role of K-ras and the involvement of interleukins in colorectal tumorigenesis, research efforts are reported for the first time, showing that differentially expressed interleukin IL-17, IL-22, and IL-23 levels are associated with K-ras in a stage-specific fashion along colorectal cancer progression. Specifically, a) the effect of K-ras signaling was investigated in the overall expression of interleukins in patients with colorectal cancer and healthy controls, and b) an association was established between mutant K-ras and cytokines GM-CSF and IFN-γ. The results indicate that specific interleukins are differentially expressed in K-ras positive patients and the use of K-ras inhibitor Manumycin A decreases both interleukin levels and apoptosis in Caco-2 cells by inhibiting cell viability. Finally, inflammation-driven GM-CSF and IFN-γ levels are modulated through interleukin expression in tumor patients, with interleukin expression in the intestinal lumen and cancerous tissue mediated by aberrant K-ras signaling. Collectively, the findings a) indicate that interleukin expression is influenced by ras signaling and specific interleukins play an oncogenic promoter role in colorectal cancer, highlighting the molecular link between inflammation and tumorigenesis, and b) accentuate the interwoven molecular correlations as leads to new therapeutic approaches in the future.


Assuntos
Neoplasias Colorretais/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Interferon gama/genética , Interleucina-17/genética , Interleucina-23/genética , Interleucinas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Apoptose/genética , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Interleucinas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Polienos/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Proteínas Proto-Oncogênicas p21(ras) , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Interleucina 22
20.
Acta Crystallogr C ; 69(Pt 8): 868-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23907878

RESUMO

The structure of the title centrosymmetric compound, [Zn(C9H6NO)2(H2O)2], has already been solved three times [Merritt, Cady & Mundy (1954). Acta Cryst. 7, 473-476; Palenik (1964). Acta Cryst. 17, 696-700; Chen, Zhang, Shi, Huang, Liang & Zhou (2003). Acta Cryst. E59, m814-m815]. The authors of the two most recent papers state that they attained lower R1 values than that obtained in the 1954 paper, but they do not mention that Merritt et al. had derived the structural model from a twinned crystal. Also, from a structural point of view, there are strong indications that the most recent report is in fact the isostructural CuII complex already reported by Okabe & Saishu [Acta Cryst. (2001), E57, m251-m252] and not the ZnII complex. The structure of the title compound is reported here based on data obtained from a twinned crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...