Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712049

RESUMO

Mild hyperthermia (MHTh) is often used in combination with chemotherapy and radiotherapy for cancer treatment. In the current study, the effect of MHTh on the enhanced uptake of the FDA-approved chemotherapy drug, liposomal doxorubicin (dox) in syngeneic 4T1 tumors was investigated. Doxorubicin has inherent fluorescence properties having an emission signal at 590 nm upon excitation with a 480 nm laser. A group of mice administered with doxorubicin (dox) were exposed to MHTh (42 °C) for 30 minutes whereas control group given dox did not receive MHTh. Ex vivo optical imaging of harvested tumors confirmed higher uptake of dox in treated versus the control untreated tumors. Confocal microscopy of tumor sections indicates higher fluorescent intensity due to increased accumulation of dox in MHTh-treated compared to untreated tumors. We examined the effect of MHTh to enhance CD8 tumor infiltration, production of interferon-γ (IFN-γ) and expression of programmed death ligand-1 (PD-L1). mRNA in situ hybridization was performed to test for transcripts of CD8, IFN-γ and PD-L1. Results showed that higher expression of CD8 mRNA was observed in MHTh-administered tumors versus untreated cohorts. The signal for IFN-γ and PD-L1 in both groups were not significantly different. Taken together, our findings imply that MHTh can improve tumor uptake of dox. Importantly, our data suggests that MHTh can boost CD8+ T cell infiltration.

2.
J Nucl Med ; 64(11): 1806-1814, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37474270

RESUMO

Inflammatory bowel disease (IBD), which includes both Crohn disease and ulcerative colitis, is a relapsing inflammatory disease of the gastrointestinal tract. Long-term chronic inflammatory conditions elevate the patient's risk of colorectal cancer (CRC). Currently, diagnosis requires endoscopy with biopsy. This procedure is invasive and requires a bowel-preparatory regimen, adding to patient burden. Interleukin 12 (IL12) and interleukin 23 (IL23) play key roles in inflammation, especially in the pathogenesis of IBD, and are established therapeutic targets. We propose that imaging of IL12/23 and its p40 subunit in IBD via immuno-PET potentially provides a new noninvasive diagnostic approach. Methods: Our aim was to investigate the potential of immuno-PET to image inflammation in a chemically induced mouse model of colitis using dextran sodium sulfate by targeting IL12/23p40 with a 89Zr-radiolabeled anti-IL12/23p40 antibody. Results: High uptake of the IL12/23p40 immuno-PET agent was exhibited by dextran sodium sulfate-administered mice, and this uptake correlated with increased IL12/23p40 present in the sera. Competitive binding studies confirmed the specificity of the radiotracer for IL12/23p40 in the gastrointestinal tract. Conclusion: These promising results demonstrate the utility of this radiotracer as an imaging biomarker of IBD. Moreover, IL12/23p40 immuno-PET can potentially guide treatment decisions for IBD management.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Interleucina-12/efeitos adversos , Dextranos , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inflamação , Tomografia por Emissão de Pósitrons , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
3.
Theranostics ; 13(7): 2057-2071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153742

RESUMO

Purpose: TRA-1-60 (TRA) is an established transcription factor of embryonic signaling and a well-known marker of pluripotency. It has been implicated in tumorigenesis and metastases, is not expressed in differentiated cells, which makes it an appealing biomarker for immunopositron emission tomography (immunoPET) imaging and radiopharmaceutical therapy (RPT). Herein, we explored the clinical implications of TRA in prostate cancer (PCa), examined the potential of TRA-targeted PET to specifically image TRA+ cancer stem cells (CSCs) and assessed response to the selective ablation of PCa CSCs using TRA-targeted RPT. Experimental Design: First, we assessed the relationship between TRA (PODXL) copy number alterations (CNA) and survival using publicly available patient databases. The anti-TRA antibody, Bstrongomab, was radiolabeled with Zr-89 or Lu-177 for immunoPET imaging and RPT in PCa xenografts. Radiosensitive tissues were collected to assess radiotoxicity while excised tumors were examined for pathologic treatment response. Results: Patients with tumors having high PODXL CNA exhibited poorer progression-free survival than those with low PODXL, suggesting that it plays an important role in tumor aggressiveness. TRA-targeted immunoPET imaging specifically imaged CSCs in DU-145 xenografts. Tumors treated with TRA RPT exhibited delayed growth and decreased proliferative activity, marked by Ki-67 immunohistochemistry. Aside from minor weight loss in select animals, no significant signs of radiotoxicity were observed in the kidneys or livers. Conclusions: We successfully demonstrated the clinical significance of TRA expression in human PCa, engineered and tested radiotheranostic agents to image and treat TRA+ prostate CSCs. Ablation of TRA+ CSCs blunted PCa growth. Future studies combining CSC ablation with standard treatment will be explored to achieve durable responses.


Assuntos
Células-Tronco Pluripotentes , Neoplasias da Próstata , Masculino , Animais , Humanos , Radioisótopos , Zircônio , Tomografia Computadorizada por Raios X , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos , Células-Tronco Pluripotentes/metabolismo , Linhagem Celular Tumoral
4.
Nucl Med Biol ; 114-115: 162-167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35753939

RESUMO

INTRODUCTION: Interferon-γ (IFN-γ) is an appealing target to evaluate immune response in cancer immunotherapy as it is a hallmark of an active immune system. Imaging and detection via immunopositron emission tomography (immunoPET) of this soluble cytokine has been made feasible using a 89Zr-labeled (t 1/2 ~ 3.27 d) monoclonal antibody (mAb). Because of its size, using a full-length mAb as an imaging vector is not ideal for repeat serial imaging because of its prolonged blood pool residency and tumor accumulation resulting in lengthier wait times between administration and imaging. This consequently impacts the potential to image a dynamic immune response in real time. This work compares 89Zr-labeled diabodies (Db) designed with variable linker lengths between the VH and VL regions with the goal of selecting a lead Db for future studies. METHODS AND RESULTS: Four Db fragments with various linker lengths (HL-n, n = 7-13 amino acids) were each conjugated to desferrioxamine (DFO). The number of attached chelates was analyzed via mass spectrometry with all immunoconjugates exhibiting one unit of DFO attached. Db-DFO conjugates were subsequently radiolabeled with zirconium-89. All constructs radiolabeled with high yields. Each radioimmunoconjugate was tested for reactivity to IFN-γ. All tracers except for [89Zr]Zr-DFO-NCS-anti-IFN-γ HL-9 exhibited comparable immunoreactivities (>90 %) to the radiolabeled parent mAb (95.8 %). At 24 h post-labeling, the IRF values were retained except for the HL-13 construct. Imaging scans and tissue distribution studies acquired in mice bearing CT26 syngeneic colorectal tumors between 1 and 24 h post-tracer administration demonstrated variable clearance kinetics and tumor localization of each radiotracer. HL-7 had higher binding in non-tumor tissues compared to HL-11 and HL-13 at 3 h p.i. Competitive binding studies versus unmodified parent mAb (AN-18) demonstrated blocking of radiolabeled HL-11 and HL-13. [89Zr]Zr-DFO-NCS-anti-IFN-γ HL-7 was inadequately blocked. CONCLUSION: Despite nuanced differences in linker lengths, our data demonstrates that [89Zr]Zr-DFO-NCS-anti-IFN-γ HL-11 exhibited the best radiotracer properties for the assessment of IFN-γ production in vivo. Work is currently underway to test the potential of using shorter-lived isotopes, like copper-64 (t1/2 ~ 12.7 h) to match pharmacokinetics and half-lives.


Assuntos
Imunoconjugados , Neoplasias , Animais , Camundongos , Interferon gama , Desferroxamina/química , Tomografia por Emissão de Pósitrons/métodos , Zircônio/química , Imunoconjugados/química , Anticorpos Monoclonais/química , Linhagem Celular Tumoral
5.
Cell Death Dis ; 12(11): 997, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697296

RESUMO

The autophagy-lysosome pathway and apoptosis constitute vital determinants of cell fate and engage in a complex interplay in both physiological and pathological conditions. Central to this interplay is the archetypal autophagic cargo adaptor p62/SQSTM1/Sequestosome-1 which mediates both cell survival and endoplasmic reticulum stress-induced apoptosis via aggregation of ubiquitinated caspase-8. Here, we investigated the role of p62-mediated apoptosis in head and neck squamous cell carcinoma (HNSCC), which can be divided into two groups based on human papillomavirus (HPV) infection status. We show that increased autophagic flux and defective apoptosis are associated with radioresistance in HPV(-) HNSCC, whereas HPV(+) HNSCC fail to induce autophagic flux and readily undergo apoptotic cell death upon radiation treatments. The degree of radioresistance and tumor progression of HPV(-) HNSCC respectively correlated with autophagic activity and cytosolic levels of p62. Pharmacological activation of the p62-ZZ domain using small molecule ligands sensitized radioresistant HPV(-) HNSCC cells to ionizing radiation by facilitating p62 self-polymerization and sequestration of cargoes leading to apoptosis. The self-polymerizing activity of p62 was identified as the essential mechanism by which ubiquitinated caspase-8 is sequestered into aggresome-like structures, without which irradiation fails to induce apoptosis in HNSCC. Our results suggest that harnessing p62-dependent sequestration of ubiquitinated caspase-8 provides a novel therapeutic avenue in patients with radioresistant tumors.


Assuntos
Apoptose/imunologia , Radiação Ionizante , Proteína Sequestossoma-1/metabolismo , Animais , Caspase 8 , Humanos , Camundongos , Lesões por Radiação , Transdução de Sinais
6.
Sci Rep ; 10(1): 2309, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047176

RESUMO

The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site. However, implantation of DDR1b- or DDR2-expressing HT1080 cells with collagen I significantly accelerated tumour growth rate, an effect that could not be observed with collagen I in the absence of DDR induction. Interestingly, DDR1b, but not DDR2, completely hindered the ability of HT1080 cells to form lung colonies after intravenous inoculation, suggesting a differential role for DDR1b in primary tumour growth and lung colonization. Analyses of tumour extracts revealed specific alterations in Hippo pathway core components, as a function of DDR and collagen expression, that were associated with stimulation of tumour growth by DDRs and collagen I. Collectively, these findings identified divergent effects of DDRs on primary tumour growth and experimental lung metastasis in the HT1080 xenograft model and highlight the critical role of fibrillar collagen and DDRs in supporting the growth of tumours thriving within a collagen-rich stroma.


Assuntos
Biomarcadores Tumorais/metabolismo , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Receptor com Domínio Discoidina 2/metabolismo , Colágenos Fibrilares/metabolismo , Fibrossarcoma/patologia , Neoplasias Pulmonares/prevenção & controle , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 2/genética , Feminino , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Fosforilação , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Bosn J Basic Med Sci ; 16(1): 8-13, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26773172

RESUMO

Despite substantial similarities in embryological, cellular and molecular biology features, human and mouse prostates differ in organ morphology and tissue architecture. Thus, a clear understanding of the anatomy and histology of the mouse prostate is essential for the identification of urogenital phenotypes in genetically engineered mice, as well as for the study of the etiology, development, and treatment of human prostatic diseases for which mouse models are used. The purpose of this manuscript is to provide a brief guide for the dissection of the mouse prostate and the identification of its different lobes and histology, to both basic researchers and medical pathologists who are unfamiliar with mouse tissues.


Assuntos
Próstata/anatomia & histologia , Próstata/patologia , Animais , Modelos Animais de Doenças , Cães , Amarelo de Eosina-(YS)/química , Hematoxilina/química , Histologia , Humanos , Masculino , Camundongos , Modelos Animais , Fenótipo , Próstata/cirurgia , Ratos , Especificidade da Espécie
8.
Int J Cancer ; 136(1): 11-20, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24798488

RESUMO

Loss of BRCA2 function stimulates prostate cancer (PCa) cell invasion and is associated with more aggressive and metastatic tumors in PCa patients. Concurrently, the receptor tyrosine kinase c-kit is highly expressed in skeletal metastases of PCa patients and induced in PCa cells placed into the bone microenvironment in experimental models. However, the precise requirement of c-kit for intraosseous growth of PCa and its relation to BRCA2 expression remain unexplored. Here, we show that c-kit expression promotes migration and invasion of PCa cells. Alongside, we found that c-kit expression in PCa cells parallels BRCA2 downregulation. Gene rescue experiments with human BRCA2 transgene in c-kit-transfected PCa cells resulted in reduction of c-kit protein expression and migration and invasion, suggesting a functional significance of BRCA2 downregulation by c-kit. The inverse association between c-kit and BRCA2 gene expressions in PCa cells was confirmed using laser capture microdissection in experimental intraosseous tumors and bone metastases of PCa patients. Inhibition of bone-induced c-kit expression in PCa cells transduced with lentiviral short hairpin RNA reduced intraosseous tumor incidence and growth. Overall, our results provide evidence of a novel pathway that links bone-induced c-kit expression in PCa cells to BRCA2 downregulation and supports bone metastasis.


Assuntos
Neoplasias Ósseas/enzimologia , Neoplasias da Próstata/enzimologia , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos SCID , Invasividade Neoplásica , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo
9.
Oncotarget ; 5(22): 11225-36, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-25373490

RESUMO

The goal of the current study is to examine the biological effects of epithelial-specific tumor suppressor maspin on tumor host immune response. Accumulated evidence demonstrates an anti-tumor effect of maspin on tumor growth, invasion and metastasis. The molecular mechanism underlying these biological functions of maspin is thought to be through histone deacetylase inhibition, key to the maintenance of differentiated epithelial phenotype. Since tumor-driven stromal reactivities co-evolve in tumor progression and metastasis, it is not surprising that maspin expression in tumor cells inhibits extracellular matrix degradation, increases fibrosis and blocks hypoxia-induced angiogenesis. Using the athymic nude mouse model capable of supporting the growth and progression of xenogeneic human prostate cancer cells, we further demonstrate that maspin expression in tumor cells elicits neutrophil- and B cells-dependent host tumor immunogenicity. Specifically, mice bearing maspin-expressing tumors exhibited increased systemic and intratumoral neutrophil maturation, activation and antibody-dependent cytotoxicity, and decreased peritumoral lymphangiogenesis. These results reveal a novel biological function of maspin in directing host immunity towards tumor elimination that helps explain the significant reduction of xenograft tumor incidence in vivo and the clinical correlation of maspin with better prognosis of several types of cancer. Taken together, our data raised the possibility for novel maspin-based cancer immunotherapies.


Assuntos
Neoplasias da Próstata/imunologia , Serpinas/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Serpinas/biossíntese , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Cancer ; 12(1): 85, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23902739

RESUMO

INTRODUCTION: The chemokine CXCL12, also known as SDF-1, and its receptor, CXCR4, are overexpressed in prostate cancers and in animal models of prostate-specific PTEN deletion, but their regulation is poorly understood. Loss of the tumor suppressor PTEN (phosphatase and tensin homolog) is frequently observed in cancer, resulting in the deregulation of cell survival, growth, and proliferation. We hypothesize that loss of PTEN and subsequent activation of Akt, frequent occurrences in prostate cancer, regulate the CXCL12/CXCR4 signaling axis in tumor growth and bone metastasis. METHODS: Murine prostate epithelial cells from PTEN+/+, PTEN+/-, and PTEN-/- (prostate specific knockdown) mice as well as human prostate cancer cell lines C4-2B, PC3, and DU145 were used in gene expression and invasion studies with Akt inhibition. Additionally, HA-tagged Akt1 was overexpressed in DU145, and tumor growth in subcutaneous and intra-tibia bone metastasis models were analyzed. RESULTS: Loss of PTEN resulted in increased expression of CXCR4 and CXCL12 and Akt inhibition reversed expression and cellular invasion. These results suggest that loss of PTEN may play a key role in the regulation of this chemokine activity in prostate cancer. Overexpression of Akt1 in DU145 resulted in increased CXCR4 expression, as well as increased proliferation and cell cycle progression. Subcutaneous injection of these cells also resulted in increased tumor growth as compared to neo controls. Akt1 overexpression reversed the osteosclerotic phenotype associated with DU145 cells to an osteolytic phenotype and enhanced intra-osseous tumor growth. CONCLUSIONS: These results suggest the basis for activation of CXCL12 signaling through CXCR4 in prostate cancer driven by the loss of PTEN and subsequent activation of Akt. Akt1-associated CXCL12/CXCR4 signaling promotes tumor growth, suggesting that Akt inhibitors may potentially be employed as anticancer agents to target expansion of PC bone metastases.


Assuntos
Quimiocina CXCL12/metabolismo , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/metabolismo , Receptores CXCR4/genética , Transdução de Sinais
11.
Prostate ; 72(12): 1328-38, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22213159

RESUMO

BACKGROUND: The major cause of death in prostate cancer (PCa) cases is due to distant metastatic lesions, with the bone being the most prevalent site for secondary colonization. Utilization of small molecule inhibitors to treat bone metastatic PCa have had limited success either as monotherapies or in combination with other chemotherapeutics due to intolerable toxicities. In the current study, we developed a clinically relevant in vivo intraosseous tumor model overexpressing the platelet-derived growth factor D (PDGF D) to test the efficacy of a newly characterized vascular endothelial growth factor receptor (VEGFR)/PDGFR inhibitor, cediranib (also called AZD2171). METHODS: An intratibial-injection model was established utilizing DU145 cells with or without increased PDGF D expression. Tumor-bearing mice were treated by daily gavage administration of cediranib and/or weekly i.p. injection of docetaxel for 7 weeks. Tibiae were monitored by in vivo/ex vivo X-rays and histomorphometry analysis was performed to estimate tumor volume and tumor-associated trabecular bone growth. RESULTS: Cediranib reduced intraosseous growth of prostate tumors as well as tumor-associated bone responses. When compared to the standard chemotherapeutic agent docetaxel, cediranib exhibited a stronger inhibition of tumor-associated bone response. The efficacy of cediranib was further enhanced when the drug was co-administered with docetaxel. Importantly, the therapeutic benefits of cediranib and docetaxel are more prominent in intraosseous prostate tumors overexpressing PDGF D. CONCLUSION: These novel findings support the utilization of cediranib, either alone or in combination with docetaxel, to treat bone metastatic PCa exhibiting PDGF D expression.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Inibidores do Crescimento/uso terapêutico , Linfocinas/biossíntese , Fator de Crescimento Derivado de Plaquetas/biossíntese , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Quinazolinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Humanos , Linfocinas/antagonistas & inibidores , Masculino , Camundongos , Camundongos SCID , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Neoplasias da Próstata/metabolismo , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Neoplasia ; 10(5): 439-49, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18472961

RESUMO

A variety of proteases have been implicated in prostate cancer (PC) bone metastasis, but the individual contributions of these enzymes remain unclear. Urokinase-type plasminogen activator (uPA), a serine protease, can activate plasminogen and stimulate signaling events on binding its receptor uPAR. In the present study, we investigated the functional role of PC cell-associated uPA in intraosseous tumor growth and bone matrix degradation. Using a severe combined immunodeficient-human mouse model, we found that PC3 cells were the major source of uPA in the experimental bone tumor. Injection of uPA-silenced PC3 cells in bone xenografts resulted in significant reduction of bone tumor burdens and protection of trabecular bones from destruction. The suppressed tumor growth was associated with the level of uPA expression but not with its activity. An increase in the expression of PAI-1, the endogenous uPA inhibitor, was found during in vitro tumor-stromal interactions. Up-regulation of PAI-1 in bone stromal cells and preosteoclasts/osteoblasts was due to soluble factor(s) released by PC cells, and the enhanced PAI-1 expression in turn stimulated PC cell migration. Our results indicate that both tumor-derived uPA and tumor-stroma-induced PAI-1 play important roles in intraosseous metastatic PC growth through regulation of a uPA-uPAR-PAI-1 axis by autocrine/paracrine mechanisms.


Assuntos
Neoplasias Ósseas/metabolismo , Remodelação Óssea , Neoplasias da Próstata/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Neoplasias Ósseas/patologia , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos SCID , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Células Estromais/patologia , Transplante Heterólogo
13.
Stem Cells ; 26(6): 1425-35, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18403754

RESUMO

The majority of human malignancies are believed to have epithelial origin, and the progression of cancer is often associated with a transient process named epithelial-mesenchymal transition (EMT). EMT is characterized by the loss of epithelial markers and the gain of mesenchymal markers that are typical of "cancer stem-like cells," which results in increased cell invasion and metastasis in vivo. Therefore, it is important to uncover the mechanistic role of factors that may induce EMT in cancer progression. Studies have shown that platelet-derived growth factor (PDGF) signaling contributes to EMT, and more recently, PDGF-D has been shown to regulate cancer cell invasion and angiogenesis. However, the mechanism by which PDGF-D promotes invasion and metastases and whether it is due to the acquisition of EMT phenotype remain elusive. For this study, we established stably transfected PC3 cells expressing high levels of PDGF-D, which resulted in the significant induction of EMT as shown by changes in cellular morphology concomitant with the loss of E-cadherin and zonula occludens-1 and gain of vimentin. We also found activation of mammalian target of rapamycin and nuclear factor-kappaB, as well as Bcl-2 overexpression, in PDGF-D PC3 cells, which was associated with enhanced adhesive and invasive behaviors. More importantly, PDGF-D-overexpressing PC3 cells showed tumor growth in SCID mice much more rapidly than PC3 cells. These results provided a novel mechanism by which PDGF-D promotes EMT, which in turn increases tumor growth, and these results further suggest that PDGF-D could be a novel therapeutic target for the prevention and/or treatment of prostate cancer. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Células Epiteliais/patologia , Linfocinas/genética , Linfocinas/fisiologia , Mesoderma/patologia , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/fisiologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Células Epiteliais/citologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Mesoderma/citologia , Invasividade Neoplásica , Plasmídeos , Reação em Cadeia da Polimerase , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , Transfecção
14.
J Biol Chem ; 283(25): 17391-405, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18413312

RESUMO

Membrane type 1 (MT1) matrix metalloproteinase (MMP-14) is a membrane-tethered MMP considered to be a major mediator of pericellular proteolysis. MT1-MMP is regulated by a complex array of mechanisms, including processing and endocytosis that determine the pool of active proteases on the plasma membrane. Autocatalytic processing of active MT1-MMP generates an inactive membrane-tethered 44-kDa product (44-MT1) lacking the catalytic domain. This form preserves all other enzyme domains and is retained at the cell surface. Paradoxically, accumulation of the 44-kDa form has been associated with increased enzymatic activity. Here we report that expression of a recombinant 44-MT1 (Gly(285)-Val(582)) in HT1080 fibrosarcoma cells results in enhanced pro-MMP-2 activation, proliferation within a three-dimensional collagen I matrix, and tumor growth and lung metastasis in mice. Stimulation of pro-MMP-2 activation and growth in collagen I was also observed in other cell systems. Expression of 44-MT1 in HT1080 cells is associated with a delay in the rate of active MT1-MMP endocytosis resulting in higher levels of active enzyme at the cell surface. Consistently, deletion of the cytosolic domain obliterates the stimulatory effects of 44-MT1 on MT1-MMP activity. In contrast, deletion of the hinge turns the 44-MT1 form into a negative regulator of enzyme function in vitro and in vivo, suggesting a key role for the hinge region in the functional relationship between active and processed MT1-MMP. Together, these results suggest a novel role for the 44-kDa form of MT1-MMP generated during autocatalytic processing in maintaining the pool of active enzyme at the cell surface.


Assuntos
Regulação Enzimológica da Expressão Gênica , Metaloproteinase 14 da Matriz/fisiologia , Animais , Catálise , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colágeno/química , Citosol/metabolismo , Endocitose , Regulação Neoplásica da Expressão Gênica , Haplorrinos , Humanos , Modelos Biológicos , Metástase Neoplásica , Proteínas Recombinantes/química
15.
Int J Cancer ; 122(11): 2482-90, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18324629

RESUMO

At the cellular level, the process of bone metastasis involves many steps. Circulating cancer cells enter the marrow, proliferate, induce neovascularization, and ultimately expand into a clinically detectable, often symptomatic, metastatic deposit. Although the initial establishment and later expansion of the metastatic deposit in bone require tumor cells to possess invasive capability, the exact proteases responsible for this phenotype are not well known. The objective of our study was to take an unbiased approach to determine which proteases were expressed and functional during the initial interactions between prostate cancer cells and bone marrow stromal (BMS) cells. We found that the combination of human prostate cancer PC3 and BMS cells stimulates the invasive ability of cancer cells through type I collagen. The use of inhibitors for each of the major protease families indicated that 1 or more MMPs was/were responsible for the BMS-induced invasion. Gene profiling and semiquantitative RT-PCR analysis revealed an increased expression of several MMP genes because of PC3/BMS cell interaction. However, only MMP-12 showed an increase in protein expression. Downregulation of MMP-12 expression in PC3 cells by siRNA inhibited the enhanced invasion induced by PC3/BMS cell interaction. In vivo, MMP-12 was found to be primarily expressed by prostate cancer cells growing in bone. Our data suggest that BMS cells induce MMP-12 expression in prostate cancer cells, which results in invasive cells capable of degradation of type I collagen.


Assuntos
Células da Medula Óssea/patologia , Colágeno Tipo I/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Células Estromais/patologia , Western Blotting , Linhagem Celular Tumoral , Técnicas de Cocultura , Regulação para Baixo , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Queratinas/análise , Masculino , Metaloproteinases da Matriz/metabolismo , Invasividade Neoplásica , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Regulação para Cima
16.
Urology ; 69(4): 795-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17445684

RESUMO

OBJECTIVES: To determine whether matrix metalloproteinase (MMP)-9 activation resulting from prostate cancer cell-bone interaction is dependent on the tumor cell type and/or the nature of the bone microenvironment. METHODS: In vitro co-cultures of human prostate cancer cells (PC3 and C4-2B) and mouse, human fetal, or human adult tissues were performed. In vivo the tumor cells were intratibially injected in SCID mice or intraosseously inoculated into fetal or adult bone xenografts in SCID mice. MMP-2 and MMP-9 expression and activation were determined by gelatin zymography in conditioned media obtained in vitro and in lysates derived from the in vivo studies at different time points. RESULTS: Activation of MMP-9 occurred when PC3 cells interacted with human adult or fetal bone, either in vitro or in vivo at early time points. With C4-2B cells, activation of MMP-9 only happened in the human adult bone microenvironment at early time points after intraosseous inoculation of tumor cells. No activation of MMP-9 occurred when PC3 or C4-2B cells interacted with mouse bone, either in vitro or in vivo. CONCLUSIONS: The results of our study have shown that the activation of MMP-9 when human prostate cancer cells interact with bone depends on the particular identity of the tumor cells and the type of bone tissue used. These findings have broad implications for experimental models attempting to define tumor-microenvironmental interactions in bone metastasis.


Assuntos
Osso e Ossos/citologia , Osso e Ossos/enzimologia , Metaloproteinase 9 da Matriz/fisiologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos SCID
17.
Cancer Res ; 67(8): 3818-26, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17440096

RESUMO

Bone is the key metastatic site for prostate cancer. Endothelin 1 (ET-1) produced abundantly by prostate cancer cells binds to its receptor present on bone marrow stromal cells and favors osteoblastic response during bone metastases of prostate cancer. This suggests that interrupting ET-1 interaction with its endothelin A (ET(A)) receptor could be useful for inhibiting prostate cancer bone metastasis and, as such, may enhance the therapeutic activity of docetaxel (Taxotere), the most commonly used drug for the treatment of metastatic prostate cancer. Therefore, the goal of our study was to obtain preclinical data supporting our hypothesis that the combined use of ET(A) receptor antagonist (ABT-627; Atrasentan) with Taxotere will be superior in inducing apoptosis in vitro and inhibiting tumor growth in vivo in a SCID-hu model of experimental bone metastasis induced by C4-2b prostate cancer cells. In vitro studies were done on a panel of prostate cancer cell lines to understand the molecular basis of combination therapy, and we found that the combination was more effective in the inhibition of cell viability and induction of apoptosis in LNCaP and C4-2b cells (androgen receptor positive) but not in PC-3 cells. These results were correlated with inactivation of Akt/nuclear factor-kappaB and its target genes. For in vivo studies, the therapeutic regimen was initiated when the tumor began showing signs of growth and treatment was continued for 5 weeks. Tumor volume and serum prostate-specific antigen were used as terminal index to evaluate the therapeutic advantage of combination therapy relative to a single regimen and untreated control. At termination, we found a 90% reduction in tumor volume by combination treatment relative to the untreated control group. Most importantly, the antitumor activity was associated with the down-regulation of molecular markers in tumor tissues that were similar to those observed in vitro.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Atrasentana , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA de Neoplasias/metabolismo , Docetaxel , Sinergismo Farmacológico , Antagonistas do Receptor de Endotelina A , Humanos , Masculino , Camundongos , Camundongos SCID , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirrolidinas/administração & dosagem , Taxoides/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Prostate ; 67(1): 107-14, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17075820

RESUMO

BACKGROUND: Experimental bone metastases are typically analyzed when the skeletal tumor burden is large enough to be detected by imaging or histology. By this time, the bone microenvironment is usually destroyed, preventing useful analysis of tumor-bone interactions. METHODS: Small intraosseous tumors generated by intratibial injection of C4-2B prostate cancer cells transfected with green fluorescent protein (GFP) were assessed using in vivo and ex vivo fluorescence imaging, radiography, histology, and fluorometric analysis of bone lysates. RESULTS: Ex vivo fluorescence imaging and fluorometric analysis were capable of detecting tiny bone tumors as early as 10 days after injection. Ex vivo fluorescence imaging allowed simple quantification of small skeletal tumor burden and was useful in measuring the effect of systemic therapy. CONCLUSIONS: Ex vivo fluorescence imaging is a sensitive and easy method to quantify small skeletal tumor burden. This technique allows investigation of tumor-bone interactions while the bone microanatomy is still intact.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Animais , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos SCID , Radiografia , Espectrometria por Raios X/métodos , Espectrometria por Raios X/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...