Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Adv ; 3(2): 482-494, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371916

RESUMO

Nanoporous carbon materials with customized structural features enable sustainable and electrochemical applications through improved performance and efficiency. Carbon spherogels (highly porous carbon aerogel materials consisting of an assembly of hollow carbon nanosphere units with uniform diameters) are desirable candidates as they combine exceptional electrical conductivity, bespoke shell porosity, tunability of the shell thickness, and a high surface area. Herein, we introduce a novel and more environmentally friendly sol-gel synthesis of resorcinol-formaldehyde (RF) templated by polystyrene spheres, forming carbon spherogels in an organic solvent. By tailoring the molar ratio of resorcinol to isopropyl alcohol (R/IPA) and the concentration of polystyrene, the appropriate synthesis conditions were identified to produce carbon spherogels with adjustable wall thicknesses. A single-step solvent exchange process from deionized water to isopropyl alcohol reduces surface tension within the porous gel network, making this approach significantly time and cost-effective. The lower surface tension of IPA enables solvent extraction under ambient conditions, allowing for direct carbonization of RF gels while maintaining a specific surface area loss of less than 20% compared to supercritically dried counterparts. The specific surface areas obtained after physical activation with carbon dioxide are 2300-3600 m2 g-1. Transmission and scanning electron microscopy verify the uniform, hollow carbon sphere network morphology. Specifically, those carbon spherogels are high-performing electrodes for energy storage in a supercapacitor setup featuring a specific capacitance of up to 204 F g-1 at 200 mA g-1 using 1 M potassium hydroxide (KOH) solution as the electrolyte.

2.
Chem Commun (Camb) ; 57(32): 3905-3908, 2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33871512

RESUMO

Extraordinarily homogeneous, freestanding titania-loaded carbon spherogels can be obtained using Ti(acac)2(OiPr)2 in the polystyrene sphere templated resorcinol-formaldehyde gelation. Thereby, a distinct, crystalline titania layer is achieved inside every hollow sphere building unit. These hybrid carbon spherogels allow capitalizing on carbon's electrical conductivity and the lithium-ion intercalation capacity of titania.

3.
ACS Appl Nano Mater ; 4(12): 14115-14125, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34977479

RESUMO

A promising route to monolithic, hollow sphere carbon assemblies based on sustainable precursors with a tailored nanostructure is presented. These carbon assemblies, recently termed carbon spherogels, are generated via a polystyrene sphere template-based sol-gel process of mimosa tannin and biomass-derived 5-(hydroxymethyl)furfural. By completely replacing petroleum-based precursors (especially toxic formaldehyde) highly porous, nanoscale carbon monoliths are obtained, which are investigated as state-of-the-art, sustainable electrode materials for energy storage. This study defines the required synthesis parameters, in particular the highly acidic initial pH and a tannin/water ratio of at least 0.05 or lower, for a successful and homogeneous generation of these biobased carbon spherogels.

4.
RSC Adv ; 8(48): 27326-27331, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35539967

RESUMO

Mechanically reversible compressible resorcinol-formaldehyde (RF) aerogels can be converted into mechanically reversible compressible carbon aerogels (CA) by carbonization in an inert atmosphere. By incorporation of polystyrene spheres into the RF gels as a sacrificial template, it is possible to create macropores with controlled size within the carbon framework during carbonization. The resulting templated carbon aerogel shows enhanced mechanical flexibility during compression compared to pristine samples. In addition, the presence of hierarchical porosity provides a porous architecture attractive for energy storage applications, such as supercapacitors.

5.
ACS Appl Mater Interfaces ; 9(4): 3931-3939, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094914

RESUMO

We report the isotropic etching of 2D and 3D polystyrene (PS) nanosphere hcp arrays using a benchtop O2 radio frequency plasma cleaner. Unexpectedly, this slow isotropic etching allows tuning of both particle diameter and shape. Due to a suppressed etching rate at the point of contact between the PS particles originating from their arrangement in 2D and 3D crystals, the spherical PS templates are converted into polyhedral structures with well-defined hexagonal cross sections in directions parallel and normal to the crystal c-axis. Additionally, we found that particles located at the edge (surface) of the hcp 2D (3D) crystals showed increased etch rates compared to those of the particles within the crystals. This indicates that 2D and 3D order affect how nanostructures chemically interact with their surroundings. This work also shows that the morphology of nanostructures periodically arranged in 2D and 3D supercrystals can be modified via gas-phase etching and programmed by the superlattice symmetry. To show the potential applications of this approach, we demonstrate the lithographic transfer of the PS template hexagonal cross section into Si substrates to generate Si nanowires with well-defined hexagonal cross sections using a combination of nanosphere lithography and metal-assisted chemical etching.

6.
J Chem Thermodyn ; 71(100): 126-132, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24926103

RESUMO

The heat capacities of two samples of a fcc Cu-Zn alloy with the composition CuZn15 and CuZn34 were measured from T = 5 K to 573 K using relaxation and differential scanning calorimetry. Below ∼90 K, they are characterised by negative excess heat capacities deviating from ideal mixing by up to -0.20 and -0.44 J · mol-1 · K-1 for CuZn15 and CuZn34, respectively. The excess heat capacities produce excess vibrational entropies, which are less negative compared to the excess entropy available from the literature. Since the literature entropy data contain both, the configurational and the vibrational part of the entropy, the difference is attributed to the excess configurational entropy. The thermodynamics of different short-range ordered samples was also investigated. The extent of the short-range order had no influence on the heat capacity below T = 300 K. Above T = 300 K, where the ordering changed during the measurement, the heat capacity depended strongly on the thermal history of the samples. From these data, the heat and entropy of ordering was calculated. The results on the vibrational entropy of this study were also used to test a relationship for estimating the excess vibrational entropy of mixing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...