Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 11(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33729510

RESUMO

Tandem repeats are inherently unstable and exhibit extensive copy number polymorphisms. Despite mounting evidence for their adaptive potential, the mechanisms associated with regulation of the stability and copy number of tandem repeats remain largely unclear. To study copy number variation at tandem repeats, we used two well-studied repetitive arrays in the budding yeast genome, the ribosomal DNA (rDNA) locus, and the copper-inducible CUP1 gene array. We developed powerful, highly sensitive, and quantitative assays to measure repeat instability and copy number and used them in multiple high-throughput genetic screens to define pathways involved in regulating copy number variation. These screens revealed that rDNA stability and copy number are regulated by DNA replication, transcription, and histone acetylation. Through parallel studies of both arrays, we demonstrate that instability can be induced by DNA replication stress and transcription. Importantly, while changes in stability in response to stress are observed within a few cell divisions, a change in steady state repeat copy number requires selection over time. Further, H3K56 acetylation is required for regulating transcription and transcription-induced instability at the CUP1 array, and restricts transcription-induced amplification. Our work suggests that the modulation of replication and transcription is a direct, reversible strategy to alter stability at tandem repeats in response to environmental stimuli, which provides cells rapid adaptability through copy number variation. Additionally, histone acetylation may function to promote the normal adaptive program in response to transcriptional stress. Given the omnipresence of DNA replication, transcription, and chromatin marks like histone acetylation, the fundamental mechanisms we have uncovered significantly advance our understanding of the plasticity of tandem repeats more generally.


Assuntos
Proteínas de Saccharomyces cerevisiae , Acetilação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Variações do Número de Cópias de DNA , Histonas/genética , Histonas/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Sequências de Repetição em Tandem/genética , Replicação do DNA/genética
2.
Chromosome Res ; 27(1-2): 73-87, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604343

RESUMO

Ribosomes are large, multi-subunit ribonucleoprotein complexes, essential for protein synthesis. To meet the high cellular demand for ribosomes, all eukaryotes have numerous copies of ribosomal DNA (rDNA) genes that encode ribosomal RNA (rRNA), usually far in excess of the requirement for ribosome biogenesis. In all eukaryotes studied, rDNA genes are arranged in one or more clusters of tandem repeats localized to nucleoli. The tandem arrangement of repeats, combined with the high rates of transcription at the rDNA loci, and the difficulty of replicating repetitive sequences make the rDNA inherently unstable and particularly susceptible to large variations in repeat copy number. Despite mounting evidence suggesting extra-ribosomal functions of the rDNA, its repetitive nature has excluded it from traditional sequencing-based studies. However, more recently, several studies have revealed the unique potential of the rDNA to act as a "canary in the coalmine," being particularly sensitive to genomic stresses and acting as a source of adaptive response. Here, we review evidence uncovering mechanisms of regulation of instability and copy number variation at the rDNA and their role in adaptation to the environment, which could serve to understand the basic principles governing the behavior of other tandem repeats and their role in shaping the genome.


Assuntos
Adaptação Biológica/genética , DNA Ribossômico/genética , Instabilidade Genômica , Animais , Sequência Conservada , Variações do Número de Cópias de DNA , Replicação do DNA , Evolução Molecular , Genômica/métodos , Humanos , Sequências Repetitivas de Ácido Nucleico , Sequências de Repetição em Tandem , Transcrição Gênica
3.
PLoS Genet ; 13(9): e1007006, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28915237

RESUMO

Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.


Assuntos
Variações do Número de Cópias de DNA/genética , Replicação do DNA/genética , DNA Ribossômico/genética , Recombinação Genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Camundongos , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...