Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 221(8): 4187-4202, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26687503

RESUMO

Somatic motor neurons in the hypoglossal nucleus innervate tongue muscles controlling vital functions such as chewing, swallowing and respiration. Formation of functional hypoglossal nerve circuits depends on the establishment of precise hypoglossal motor neuron maps correlating with specific tongue muscle innervations. Little is known about the molecular mechanisms controlling mammalian hypoglossal motor neuron topographic map formation. Here we show that combinatorial expression of transcription factors Runx1, SCIP and FoxP1 defines separate mouse hypoglossal motor neuron groups with different topological, neurotransmitter and calcium-buffering phenotypes. Runx1 and SCIP are coexpressed in ventromedial hypoglossal motor neurons involved in control of tongue protrusion whereas FoxP1 is expressed in dorsomedial motor neurons associated with tongue retraction. Establishment of separate hypoglossal motor neuron maps depends in part on Runx1-mediated suppression of ventrolateral and dorsomedial motor neuron phenotypes and regulation of FoxP1 expression pattern. These findings suggest that combinatorial actions of Runx1, SCIP and FoxP1 are important for mouse hypoglossal nucleus somatotopic map formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Nervo Hipoglosso/embriologia , Nervo Hipoglosso/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Camundongos Transgênicos , Fator 6 de Transcrição de Octâmero/metabolismo , Proteínas Repressoras/metabolismo , Língua/embriologia , Língua/inervação
2.
PLoS One ; 8(5): e65294, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724134

RESUMO

Loss-of-function of the potassium-chloride cotransporter 3 (KCC3) causes hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), a severe neurodegenerative disease associated with defective midline crossing of commissural axons in the brain. Conversely, KCC3 over-expression in breast, ovarian and cervical cancer is associated with enhanced tumor cell malignancy and invasiveness. We identified a highly conserved proline-rich sequence within the C-terminus of the cotransporter which when mutated leads to loss of the KCC3-dependent regulatory volume decrease (RVD) response in Xenopus Laevis oocytes. Using SH3 domain arrays, we found that this poly-proline motif is a binding site for SH3-domain containing proteins in vitro. This approach identified the guanine nucleotide exchange factor (GEF) Vav2 as a candidate partner for KCC3. KCC3/Vav2 physical interaction was confirmed using GST-pull down assays and immuno-based experiments. In cultured cervical cancer cells, KCC3 co-localized with the active form of Vav2 in swelling-induced actin-rich protruding sites and within lamellipodia of spreading and migrating cells. These data provide evidence of a molecular and functional link between the potassium-chloride co-transporters and the Rho GTPase-dependent actin remodeling machinery in RVD, cell spreading and cell protrusion dynamics, thus providing new insights into KCC3's involvement in cancer cell malignancy and in corpus callosum agenesis in HMSN/ACC.


Assuntos
Tamanho Celular , Extensões da Superfície Celular/metabolismo , Oócitos/citologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , Simportadores/metabolismo , Actinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Tamanho Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Sequência Conservada , Células HeLa , Humanos , Soluções Hipotônicas/farmacologia , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Simportadores/química , Xenopus laevis
3.
J Neurosci ; 32(11): 3865-76, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423107

RESUMO

Disruption of the potassium/chloride cotransporter 3 (KCC3), encoded by the SLC12A6 gene, causes hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC), a neurodevelopmental and neurodegenerative disorder affecting both the peripheral nervous system and CNS. However, the precise role of KCC3 in the maintenance of ion homeostasis in the nervous system and the pathogenic mechanisms leading to HMSN/ACC remain unclear. We established two Slc12a6 Cre/LoxP transgenic mouse lines expressing C-terminal truncated KCC3 in either a neuron-specific or ubiquitous fashion. Our results suggest that neuronal KCC3 expression is crucial for axon volume control. We also demonstrate that the neuropathic features of HMSN/ACC are predominantly due to a neuronal KCC3 deficit, while the auditory impairment is due to loss of non-neuronal KCC3 expression. Furthermore, we demonstrate that KCC3 plays an essential role in inflammatory pain pathways. Finally, we observed hypoplasia of the corpus callosum in both mouse mutants and a marked decrease in axonal tracts serving the auditory cortex in only the general deletion mutant. Together, these results establish KCC3 as an important player in both central and peripheral nervous system maintenance.


Assuntos
Agenesia do Corpo Caloso/genética , Modelos Animais de Doenças , Neuropatia Hereditária Motora e Sensorial/genética , Fenótipo , Simportadores/deficiência , Agenesia do Corpo Caloso/metabolismo , Agenesia do Corpo Caloso/patologia , Animais , Feminino , Neuropatia Hereditária Motora e Sensorial/metabolismo , Neuropatia Hereditária Motora e Sensorial/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Simportadores/biossíntese , Simportadores/genética
4.
PLoS One ; 7(2): e31176, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363571

RESUMO

BACKGROUND: Dorsoventral patterning of the developing spinal cord is important for the correct generation of spinal neuronal types. This process relies in part on cross-repressive interactions between specific transcription factors whose expression is regulated by Sonic hedgehog. Groucho/transducin-like Enhancer of split (TLE) proteins are transcriptional corepressors suggested to be recruited by at least certain Sonic hedgehog-controlled transcription factors to mediate the formation of spatially distinct progenitor domains within the ventral spinal cord. The aim of this study was to characterize the involvement of TLE in mechanisms regulating the establishment of the boundary between the most ventral spinal cord progenitor domains, termed pMN and p3. Because the pMN domain gives rise to somatic motor neurons while the p3 domain generates V3 interneurons, we also examined the involvement of TLE in the acquisition of these neuronal fates. METHODOLOGY AND PRINCIPAL FINDINGS: A combination of in vivo loss- and gain-of-function studies in the developing chick spinal cord was performed to characterize the role of TLE in ventral progenitor domain formation. It is shown here that TLE overexpression causes increased numbers of p3 progenitors and promotes the V3 interneuron fate while suppressing the motor neuron fate. Conversely, dominant-inhibition of TLE increases the numbers of pMN progenitors and postmitotic motor neurons. CONCLUSION: Based on these results, we propose that TLE is important to promote the formation of the p3 domain and subsequent generation of V3 interneurons.


Assuntos
Interneurônios/metabolismo , Neurônios Motores/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Repressoras/metabolismo , Medula Espinal/citologia , Transcrição Gênica , Animais , Contagem de Células , Linhagem da Célula , Embrião de Galinha , Galinhas , Proteínas Correpressoras , Proteínas do Olho/metabolismo , Genes Dominantes/genética , Células HEK293 , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/metabolismo , Humanos , Interneurônios/citologia , Camundongos , Mitose , Modelos Biológicos , Neurônios Motores/citologia , Proteínas Mutantes/metabolismo , Células-Tronco Neurais/citologia , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra
5.
J Biol Chem ; 286(32): 28456-65, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21628467

RESUMO

Missense and protein-truncating mutations of the human potassium-chloride co-transporter 3 gene (KCC3) cause hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe neurodegenerative disease characterized by axonal dysfunction and neurodevelopmental defects. We previously reported that KCC3-truncating mutations disrupt brain-type creatine kinase-dependent activation of the co-transporter through the loss of its last 140 amino acids. Here, we report a novel and more distal HMSN/ACC-truncating mutation (3402C → T; R1134X) that eliminates only the last 17 residues of the protein. This small truncation disrupts the interaction with brain-type creatine kinase in mammalian cells but also affects plasma membrane localization of the mutant transporter. Although it is not truncated, the previously reported HMSN/ACC-causing 619C → T (R207C) missense mutation also leads to KCC3 loss of function in Xenopus oocyte flux assay. Immunodetection in Xenopus oocytes and in mammalian cultured cells revealed a decreased amount of R207C at the plasma membrane, with significant retention of the mutant proteins in the endoplasmic reticulum. In mammalian cells, curcumin partially corrected these mutant protein mislocalizations, with more protein reaching the plasma membrane. These findings suggest that mis-trafficking of mutant protein is an important pathophysiological feature of HMSN/ACC causative KCC3 mutations.


Assuntos
Agenesia do Corpo Caloso/metabolismo , Substituição de Aminoácidos , Neuropatia Hereditária Motora e Sensorial/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Simportadores/metabolismo , Agenesia do Corpo Caloso/genética , Sequência de Aminoácidos , Animais , Células HeLa , Neuropatia Hereditária Motora e Sensorial/genética , Humanos , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Deleção de Sequência , Simportadores/genética , Xenopus laevis
6.
Brain Res ; 1374: 15-26, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21147077

RESUMO

Potassium/Chloride cotransporters are transmembrane proteins that regulate cell volume and control neuronal activity by transporting K(+) and Cl(-) ions across the plasma membrane. Potassium/Chloride cotransporter 3 (KCC3) mutations are responsible for hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe sensory and motor neuropathy. Two major splice variants, KCC3a and KCC3b, were shown to be expressed in adult mouse tissues. Although KCC3a is mainly expressed in the central nervous system (CNS), its specific cellular expression patterns have not been determined. Here, we used an approach combining in situ hybridization and immunohistochemical techniques to determine the cellular expression of KCC3 in the mouse CNS and showed that KCC3 is mainly expressed in neurons, including a subpopulation of interneurons. Finally, we showed that some non-neuronal cells, such as radial glial-like cells in the spinal cord, also express KCC3.


Assuntos
Encéfalo/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Simportadores/biossíntese , Animais , Encéfalo/citologia , Regulação da Expressão Gênica , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/biossíntese
7.
Hum Mol Genet ; 17(17): 2703-11, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18566107

RESUMO

The potassium-chloride co-transporter 3 (KCC3) is mutated in hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC); however, the molecular mechanisms of HMSN/ACC pathogenesis and the exact role of KCC3 in the development of the nervous system remain poorly understood. The functional regulation of this transporter by protein partners is also largely unknown. Using a yeast two-hybrid approach, we discovered that the C-terminal domain (CTD) of KCC3, which is lost in most HMSN/ACC-causing mutations, directly interacts with brain-specific creatine kinase (CK-B), an ATP-generating enzyme that is also a partner of KCC2. The interaction of KCC3 with CK-B was further confirmed by in vitro glutathione S-transferase pull-down assay, followed by sequencing of the pulled-down complexes. In transfected cultured cells, immunofluorescence labeling showed that CK-B co-localizes with wild-type KCC3, whereas the kinase fails to interact with the inactive truncated KCC3. Finally, CK-B's inhibition by DNFB results in reduction of activity of KCC3 in functional assays using Xenopus laevis oocytes. This physical and functional association between the co-transporter and CK-B is, therefore, the first protein-protein interaction identified to be potentially involved in the pathophysiology of HMSN/ACC.


Assuntos
Creatina Quinase Forma BB/metabolismo , Neuropatia Hereditária Motora e Sensorial/metabolismo , Simportadores/genética , Simportadores/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Feminino , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Ligação Proteica , Simportadores/química , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis
8.
Mol Cell Biol ; 25(17): 7645-56, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16107711

RESUMO

The regulatory circuits that orchestrate mammalian myoblast cell fusion during myogenesis are poorly understood. The transcriptional activity of FoxO1a directly regulates this process, yet the molecular mechanisms governing FoxO1a activity during muscle cell differentiation remain unknown. Here we show an autoregulatory loop in which FoxO1a directly activates transcription of the cyclic GMP-dependent protein kinase I (cGKI) gene and where the ensuing cGKI activity phosphorylates FoxO1a and abolishes its DNA binding activity. These findings establish the FoxO1a-to-cGKI pathway as a novel feedback loop that allows the precise tuning of myoblast fusion. Interestingly, this pathway appears to operate independently of muscle cell differentiation programs directed by myogenic transcription factors.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Fusão Celular , Células Cultivadas , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/genética , DNA/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Alinhamento de Sequência , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...