Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677602

RESUMO

This study is aimed at the analysis of the pyrolysis kinetics of Nanche stone BSC (Byrsonima crassifolia) as an agro-industrial waste using non-isothermal thermogravimetric experiments by determination of triplet kinetics; apparent activation energy, pre-exponential factor, and reaction model, as well as thermodynamic parameters to gather the required fundamental information for the design, construction, and operation of a pilot-scale reactor for the pyrolysis this lignocellulosic residue. Results indicate a biomass of low moisture and ash content and a high volatile matter content (≥70%), making BCS a potential candidate for obtaining various bioenergy products. Average apparent activation energies obtained from different methods (KAS, FWO and SK) were consistent in value (~123.8 kJ/mol). The pre-exponential factor from the Kissinger method ranged from 105 to 1014 min-1 for the highest pyrolytic activity stage, indicating a high-temperature reactive system. The thermodynamic parameters revealed a small difference between EA and ∆H (5.2 kJ/mol), which favors the pyrolysis reaction and indicates the feasibility of the energetic process. According to the analysis of the reaction models (master plot method), the pyrolytic degradation was dominated by a decreasing reaction order as a function of the degree of conversion. Moreover, BCS has a relatively high calorific value (14.9 MJ/kg) and a relatively low average apparent activation energy (122.7 kJ/mol) from the Starink method, which makes this biomass very suitable to be exploited for value-added energy production.

2.
RSC Adv ; 11(2): 684-699, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35423708

RESUMO

Steam reforming chemical looping (CL-SMR) using mixed iron oxides has the potential as an alternative to the current partial oxidation (POX) and steam reforming (SMR) processes. In this study, the use of FeMoO4, Fe2ZnO4 and Fe2MnO4 as oxygen carriers (OC) under the CL-SMR reaction scheme was proposed to overcome the current disadvantages of methane POX and SMR processes. This research is aimed at finding potential iron-based metal oxides for the production of syngas, which can be regenerated under favorable conditions in steam, while producing H2. Thermodynamic evaluation and process simulation of the CL-SMR reaction scheme using mixed iron-oxides was performed. Results indicate that FeMoO4, Fe2ZnO4 and Fe2MnO4 generated syngas at 750 °C, 730 °C and 600 °C, respectively. However, FeMoO4 was not fully regenerated under favorable conditions, whereas Fe2ZnO4 and Fe2MnO4 were completely regenerated at 440 °C and 640 °C, respectively. Fe2MnO4 showed the most favorable operating conditions among the studied OC towards the production of syngas. Preliminary experimental studies involved the synthesis of Fe2MnO4 through a solid-state method using Fe2O3 and MnO as precursors, which was characterized via XRD, while its redox performance was evaluated in a TGA CH4-H2O redox cycle, with reduction using CH4 followed by the steam oxidation of OC. Results indicate that both reduction with methane and oxidation with water vapor using Fe2MnO4 present reasonable reduction-oxidation rates to be used in the CL-SMR reaction scheme, verifying the feasibility of the theoretical study performed in the present investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...