Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 39: e00805, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37448785

RESUMO

Sugarcane bagasse is an abundant and renewable agricultural waste material generated by the sugar industry worldwide. The use of sugarcane bagasse as a bio-coagulant precursor in water treatment is an eco-friendly and cost-effective approach that has shown great potential. This article reviewed the prospects and challenges of utilizing sugarcane bagasse as a bio-coagulant precursor for water treatment. The article reviewed past studies and explored the properties and chemical composition of sugarcane bagasse and the bioactive compounds that can be extracted from it, as well as their potential coagulation performance in water treatment. It was observed that there are few studies that have been published on the subject. The effectiveness of sugarcane bagasse-based coagulants varies depending on several factors, such as pH, temperature, and water quality parameters. However, the lack of standardization in the production of sugarcane bagasse-based coagulants is a challenge that needs to be addressed. Additionally, the optimization of extraction and processing methods to enhance the effectiveness of sugarcane bagasse-based coagulants needs to be investigated further. In conclusion, the use of sugarcane bagasse as a bio-coagulant precursor holds great promise for the future of sustainable water treatment. The potential for sugarcane bagasse to be used as a bio-coagulant precursor highlights the importance of exploring alternative and sustainable materials for water treatment.

2.
Plants (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685875

RESUMO

The genus Merremia Dennst. ex Endl. (Convolvulaceae) is a rich source of structurally diverse phytochemicals with therapeutic relevance. This review presents the first comprehensive, up-to-date information and research progression on the nutritional value, ethnomedicinal uses, phytochemistry, pharmacological activities, and toxicity of the genus Merremia. Using the key search term "Merremia", relevant documents and information were retrieved from electronic databases. Relevant documents were uploaded in RStudio with installed bibliometric software packages and used for data retrieval, tabulation, and network visualization. Bibliometric analysis revealed that ca. 55% of the studies related to Merremia were published in the last decade, which can be grouped into four thematic areas: (i) drug formulation, (ii) taxonomy, (iii) chemical analysis, and (iv) treatment of diseases. Ethnomedicinal uses, phytochemistry, and biological activities studies showed that species in the genus are promising medicinal plants with various pharmaceutical potentials. However, clinical studies to validate the efficacy of the reported bioactivities and the mechanisms underlying the various activities are lacking and should constitute a future research focus. Additionally, reports on the nutritional and antinutritional constituents of Merremia species revealed that the species meet high nutritional quality criteria for animals and are therefore suitable for inclusion in livestock diets. The few available investigations on toxicity indicated that most Merremia species are safe for human and animal use but not with prolonged chronic administration.

3.
Biotechnol Rep (Amst) ; 25: e00428, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32071894

RESUMO

The undesirable environmental impacts of inappropriate application of pesticides have brought about research into new matrices for controlled release of pesticides. Porous starch citrate biopolymer was designed for the release of carbofuran in this experiment and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermo-Gravimetric Analysis (TGA) for functional group, surface morphology and thermal stability properties respectively. The SEM revealed highly stabilized porous starch citrate biopolymers with porous structures and gradients suitable for controlled release studies. The transmittance bands at 3347, 1714 and 1073 cm-1 for OH, CO and COC-[bond, double bond]-- stretching vibrations further confirms the successful synthesis of the biopolymer. TGA showed an increase in the thermal stability after citric acid modification with one-step decomposition from 290 ᵒC to 500 ᵒC. From Korsemeyer-Peppas model, the carbofuran-porous starch citrate (CBFN/PRS/STH/CTRT) followed a lower diffusion release model with gradual increment in all the quantity of carbofuran loaded. An accelerated rate of diffusion percentage was seen in direct application of carbofuran. Egg hatch and mortality of juveniles were recorded on daily basis for seven days. Direct application of carbofuran (CBFN/DRT) and carbofuran-porous starch citrate biopolymer gave the best results with significant (p < 0.05) reduction in egg hatch and higher percentage mortality. The rate of release of carbofuran from the starch citrate bio polymer matrix was significantly lower than the direct application, and in spite of the slow rate of release, higher juvenile mortality and reduction in egg hatch was achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...