Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745613

RESUMO

The Yersinia virulence factor YopJ potently inhibits immune signaling in macrophages by blocking activation of the signaling kinases TAK1 and IKK. In response, macrophages trigger a backup pathway of host defense that mediates cell death via the apoptotic enzyme caspase-8 and pyroptotic enzyme caspase-1. While caspase-1 is normally activated within multiprotein inflammasome complexes that contain the adaptor ASC and NLRs, which act as sensors of pathogen virulence, caspase-1 activation following Yersinia blockade of TAK1/IKK surprisingly requires caspase-8 and is independent of all known inflammasome components. Here, we report that caspase-1 activation by caspase-8 requires both caspase-8 catalytic and auto-processing activity. Intriguingly, while caspase-8 serves as an essential initiator of caspase-1 activation, caspase-1 amplifies its own activation through a feed-forward loop involving auto-processing, caspase-1-dependent cleavage of the pore-forming protein GSDMD, and subsequent activation of the canonical NLRP3 inflammasome. Notably, while caspase-1 activation and cell death are independent of inflammasomes during Yersinia infection, IL-1ß release requires the canonical NLPR3 inflammasome. Critically, activation of caspase-8 and activation of the canonical inflammasome are kinetically and spatially separable events, as rapid capase-8 activation occurs within multiple foci throughout the cell, followed by delayed subsequent assembly of a single canonical inflammasome. Importantly, caspase-8 auto-processing normally serves to prevent RIPK3/MLKL-mediated necroptosis, and in caspase-8's absence, MLKL triggers NLPR3 inflammasome activation and IL-1ß release. Altogether, our findings reveal that functionally interconnected but temporally and spatially distinct death complexes differentially mediate pyroptosis and IL-1ß release to ensure robust host defense against pathogen blockade of TAK1 and IKK.

2.
Methods Mol Biol ; 2696: 169-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37578723

RESUMO

The inflammasome-nucleating cytoplasmic sensor protein NLRP3 (NACHT-, LRR, and PYD domains-containing protein 3, also known as NOD-like receptor pyrin domain-containing 3, NALP3, or cryopyrin) is triggered by a broad spectrum of sterile endogenous danger signals and environmental irritants. Upon activation, NLRP3 engages the adapter protein ASC that in turn recruits the third inflammasome component, the protease caspase-1. Subsequent caspase-1 activation leads to its auto-processing and maturation of the leaderless IL-1 family cytokines IL-1ß and IL-18 as well as cleavage of the pore-forming protein Gasdermin D (GSDMD). GSDMD plasma membrane pores, formed by its N-terminus, facilitate IL-1 release and, typically, subsequent cell lysis (pyroptosis). This protocol explains standard methods, which are routinely used in our laboratory to study NLRP3 inflammasome biology in vitro. It includes experimental approaches using primary murine bone marrow-derived macrophages (BMDMs) and bone marrow-derived dendritic cells (BMDCs), human peripheral blood mononuclear cells (PBMCs), as well as inflammasome-competent cell lines (HoxB8 and THP-1 cells). The protocol covers the use of a broad spectrum of established NLRP3 activators and outlines the use of common inhibitors blocking NLRP3 itself or its upstream triggering events. We also provide guidelines for experimental set-up and crucial experimental controls to investigate NLRP3 inflammasome signaling or study new activators and inhibitors.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Leucócitos Mononucleares/metabolismo , Caspase 1/metabolismo , Interleucina-1 , Interleucina-1beta/metabolismo
3.
Sci Signal ; 16(768): eabh1083, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649377

RESUMO

Inflammasomes are intracellular protein complexes that promote an inflammatory host defense in response to pathogens and damaged or neoplastic tissues and are implicated in inflammatory disorders and therapeutic-induced toxicity. We investigated the mechanisms of activation for inflammasomes nucleated by NOD-like receptor (NLR) protiens. A screen of a small-molecule library revealed that several tyrosine kinase inhibitors (TKIs)-including those that are clinically approved (such as imatinib and crizotinib) or are in clinical trials (such as masitinib)-activated the NLRP3 inflammasome. Furthermore, imatinib and masitinib caused lysosomal swelling and damage independently of their kinase target, leading to cathepsin-mediated destabilization of myeloid cell membranes and, ultimately, cell lysis that was accompanied by potassium (K+) efflux, which activated NLRP3. This effect was specific to primary myeloid cells (such as peripheral blood mononuclear cells and mouse bone marrow-derived dendritic cells) and did not occur in other primary cell types or various cell lines. TKI-induced lytic cell death and NLRP3 activation, but not lysosomal damage, were prevented by stabilizing cell membranes. Our findings reveal a potential immunological off-target of some TKIs that may contribute to their clinical efficacy or to their adverse effects.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mesilato de Imatinib , Leucócitos Mononucleares/metabolismo , Morte Celular , Células Mieloides/metabolismo , Interleucina-1beta/metabolismo
4.
Curr Opin Biotechnol ; 68: 300-309, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33862489

RESUMO

The NLRP3 inflammasome is an important player in innate immunity and pathogenic inflammation. Numerous studies have implicated it in sensing endogenous danger signals, yet the precise mechanisms remain unknown. Here, we review the current knowledge on the organismal and cellular metabolic triggers engaging NLRP3, and the mechanisms involved in integrating the diverse signals.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Imunidade Inata , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
5.
Nat Commun ; 11(1): 1659, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246016

RESUMO

Oncogenic Ras mutations occur in various leukemias. It was unclear if, besides the direct transforming effect via constant RAS/MEK/ERK signaling, an inflammation-related effect of KRAS contributes to the disease. Here, we identify a functional link between oncogenic KrasG12D and NLRP3 inflammasome activation in murine and human cells. Mice expressing active KrasG12D in the hematopoietic system developed myeloproliferation and cytopenia, which is reversed in KrasG12D mice lacking NLRP3 in the hematopoietic system. Therapeutic IL-1-receptor blockade or NLRP3-inhibition reduces myeloproliferation and improves hematopoiesis. Mechanistically, KrasG12D-RAC1 activation induces reactive oxygen species (ROS) production causing NLRP3 inflammasome-activation. In agreement with our observations in mice, patient-derived myeloid leukemia cells exhibit KRAS/RAC1/ROS/NLRP3/IL-1ß axis activity. Our findings indicate that oncogenic KRAS not only act via its canonical oncogenic driver function, but also enhances the activation of the pro-inflammatory RAC1/ROS/NLRP3/IL-1ß axis. This paves the way for a therapeutic approach based on immune modulation via NLRP3 blockade in KRAS-mutant myeloid malignancies.


Assuntos
Inflamassomos/imunologia , Transtornos Mieloproliferativos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Proliferação de Células , Expressão Gênica , Hematopoese , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Leucemia Mieloide/etiologia , Leucemia Mieloide/genética , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Células Mieloides/metabolismo , Proteínas NLR/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
6.
Xenotransplantation ; 25(2): e12382, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359453

RESUMO

BACKGROUND: Multiple xenoprotective transgenes are best grouped at a single locus to avoid segregation during breeding and simplify production of donor animals. METHODS: We used transgene stacking to place a human CD55 transgene adjacent to a human heme oxygenase 1 construct at the porcine ROSA26 locus. A transgenic pig was analyzed by PCR, RT-PCR, droplet digital PCR, immunohistochemistry, immunofluorescence, and flow cytometry. Resistance to complement-mediated cell lysis and caspase 3/7 activation were determined in vitro. RESULTS: The ROSA26 locus was retargeted efficiently, and animals were generated by nuclear transfer. RNA and protein analyses revealed abundant expression in all organs analyzed, including pancreatic beta cells. Transgenic porcine kidney fibroblasts were almost completely protected against complement-mediated lysis and showed reduced caspase 3/7 activation. CONCLUSION: Step-by-step placement enables highly expressed single-copy xenoprotective transgenes to be grouped at porcine ROSA26.


Assuntos
Células Secretoras de Insulina/citologia , Transplante Heterólogo , Animais , Animais Geneticamente Modificados/genética , Antígenos CD55/genética , Antígenos CD59/genética , Fibroblastos/citologia , Loci Gênicos , Heme Oxigenase-1/genética , Humanos , Regiões Promotoras Genéticas/genética , Suínos , Transgenes/genética , Transplante Heterólogo/métodos
7.
Cell Rep ; 21(13): 3846-3859, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281832

RESUMO

Inflammasomes activate the protease caspase-1, which cleaves interleukin-1ß and interleukin-18 to generate the mature cytokines and controls their secretion and a form of inflammatory cell death called pyroptosis. By generating mice expressing enzymatically inactive caspase-1C284A, we provide genetic evidence that caspase-1 protease activity is required for canonical IL-1 secretion, pyroptosis, and inflammasome-mediated immunity. In caspase-1-deficient cells, caspase-8 can be activated at the inflammasome. Using mice either lacking the pyroptosis effector gasdermin D (GSDMD) or expressing caspase-1C284A, we found that GSDMD-dependent pyroptosis prevented caspase-8 activation at the inflammasome. In the absence of GSDMD-dependent pyroptosis, the inflammasome engaged a delayed, alternative form of lytic cell death that was accompanied by the release of large amounts of mature IL-1 and contributed to host protection. Features of this cell death modality distinguished it from apoptosis, suggesting it may represent a distinct form of pro-inflammatory regulated necrosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Piroptose , Animais , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Francisella/fisiologia , Imunidade Inata , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato , Piroptose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...