Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(55): 36002-36011, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36545063

RESUMO

Functionalized graphene offers great potential in the field of rapid detection of gases at room temperature. We performed first-principles calculations to study the suitability of 4-sulfobenzenediazonium salts (4SBD) as bandgap modifier in graphene. The signature of unpaired spins is evidenced near the Fermi level owing to the symmetry breaking of graphene sublattices. 4SBD-chemisorbed on graphene is found to be electronically sensitive to the presence of ammonia NH3 with increasing gas concentration.

2.
J Phys Condens Matter ; 29(48): 485706, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29120866

RESUMO

The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7 × 104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.

3.
Opt Express ; 22(15): 17959-67, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089415

RESUMO

The Temperature dependence of the exciton radiative decay time in ZnO nanorods has been investigated, which is associated with the density of states for the intra-relaxation of thermally excited excitons. The photoluminescence decay time was calibrated by using the photoluminescence intensity in order to obtain the radiative decay time. In the absence of an external magnetic field, we have confirmed that the radiative decay time increased with temperature in a similar manner to that seen in bulk material (∼ T1.5). Under an external magnetic field of 6 T parallel to the c-axis, we found that the power coefficient of the radiative decay time with temperature decreased (∼ T1.3) when compared to that in the absence of a magnetic field. This result can be attributed to an enhancement of the effective mass perpendicular to the magnetic field and a redshift of the center-of-mass exciton as a consequence of perturbation effects in the weak-field regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA