Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Rep Med ; 4(11): 101245, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37913775

RESUMO

Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Lipossomos , Células Th1 , Emulsões , Adjuvantes Imunológicos/farmacologia , Malária/prevenção & controle
2.
Sensors (Basel) ; 22(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35161449

RESUMO

In this paper, we presented a novel electrostatic Roll/Pitch MEMS gyroscope with in-plane drive mode and out-of-plane sense mode. The proposed structure is developed based on a tuning fork gyroscope with decoupled sense mass on each tine that control the sense out-of-plane frequency. A multi-height deep reactive ion etching (DRIE) fabrication process was utilized to achieve and enhance decoupling between the drive and sense modes. We presented our design methodology followed by an analytical and finite element (FEM) model. Our experimental results showed a good match between the analytical model and those obtained experimentally, from the drive and sense oscillation frequencies. Our characterization setup used a custom made application specific integrated circuit (ASIC) for characterization and was able to achieve ARW of 0.2 deg/rt-h, a bias instability 5.5 deg/h, and scale factor non-linearity (SFNL) 156 ppm FS.

3.
Sci Rep ; 11(1): 17928, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504134

RESUMO

Malaria is a highly prevalent parasitic disease in regions with tropical and subtropical climates worldwide. Among the species of Plasmodium causing human malaria, P. vivax is the second most prevalent and the most geographically widespread species. A major target of a pre-erythrocytic vaccine is the P. vivax circumsporozoite protein (PvCSP). In previous studies, we fused two recombinant proteins representing three allelic variants of PvCSP (VK210, VK247 and P. vivax-like) to the mumps virus nucleocapsid protein to enhance immune responses against PvCSP. The objective of the present study was to evaluate the protective efficacy of these recombinants in mice challenged with transgenic P. berghei parasites expressing PvCSP allelic variants. Formulations containing Poly (I:C) or Montanide ISA720 as adjuvants elicited high and long-lasting IgG antibody titers specific to each PvCSP allelic variant. Immunized mice were challenged with two existing chimeric P. berghei parasite lines expressing PvCSP-VK210 and PvCSP-VK247. We also developed a novel chimeric line expressing the third allelic variant, PvCSP-P. vivax-like, as a new murine immunization-challenge model. Our formulations conferred partial protection (significant delay in the time to reach 1% parasitemia) against challenge with the three chimeric parasites. Our results provide insights into the development of a vaccine targeting multiple strains of P. vivax.


Assuntos
Alelos , Imunidade Humoral , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinação/métodos , Adjuvantes Imunológicos , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Feminino , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacinas Antimaláricas/química , Malária Vivax/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Organismos Geneticamente Modificados , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/imunologia
4.
PLoS One ; 16(7): e0254498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252120

RESUMO

To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Animais , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Eritrócitos/metabolismo , Feminino , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/genética , Malária Falciparum/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteína Ribossômica L3 , Esporozoítos/patogenicidade
5.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34135099

RESUMO

Progress towards a protective vaccine against malaria remains slow. To date, only limited protection has been routinely achieved following immunisation with either whole-parasite (sporozoite) or subunit-based vaccines. One major roadblock to vaccine progress, and to pre-erythrocytic parasite biology in general, is the continued reliance on manual salivary gland dissection for sporozoite isolation from infected mosquitoes. Here, we report development of a multi-step method, based on batch processing of homogenised whole mosquitoes, slurry, and density-gradient filtration, which combined with free-flow electrophoresis rapidly produces a pure, infective sporozoite inoculum. Human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei sporozoites produced in this way are two- to threefold more infective than salivary gland dissection sporozoites in in vitro hepatocyte infection assays. In an in vivo rodent malaria model, the same P. berghei sporozoites confer sterile protection from mosquito-bite challenge when immunisation is delivered intravenously or 60-70% protection when delivered intramuscularly. By improving purity, infectivity, and immunogenicity, this method represents a key advancement in capacity to produce research-grade sporozoites, which should impact delivery of a whole-parasite based malaria vaccine at scale in the future.


Assuntos
Culicidae/parasitologia , Malária/prevenção & controle , Plasmodium berghei/patogenicidade , Plasmodium falciparum/patogenicidade , Esporozoítos/patogenicidade , Animais , Modelos Animais de Doenças , Drosophila , Células Hep G2 , Humanos , Imunização , Masculino , Ratos , Esporozoítos/crescimento & desenvolvimento
6.
Sci Rep ; 11(1): 10792, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031479

RESUMO

An effective vaccine would be a valuable tool for malaria control and elimination; however, the leading malaria vaccine in development, RTS,S/AS01, provided only partial protection in a Phase 3 trial. R21 is a next-generation RTS,S-like vaccine. We have previously shown in mice that R21 administered in Matrix-M is highly immunogenic, able to elicit complete protection against sporozoite challenge, and can be successfully administered with TRAP based viral-vectors resulting in enhanced protection. In this study, we developed a novel, GMP-compatible purification process for R21, and evaluated the immunogenicity and protective efficacy of ultra-low doses of both R21 and RTS,S when formulated in AS01. We demonstrated that both vaccines are highly immunogenic and also elicit comparable high levels of protection against transgenic parasites in BALB/c mice. By lowering the vaccine dose there was a trend for increased immunogenicity and sterile protection, with the highest dose vaccine groups achieving the lowest efficacy (50% sterile protection). We also evaluated the ability to combine RTS,S/AS01 with TRAP based viral-vectors and observed concurrent induction of immune responses to both antigens with minimal interference when mixing the vaccines prior to administration. These studies suggest that R21 or RTS,S could be combined with viral-vectors for a multi-component vaccination approach and indicate that low dose vaccination should be fully explored in humans to maximize potential efficacy.


Assuntos
Anticorpos Antiprotozoários/sangue , Vacinas Antimaláricas/administração & dosagem , Malária/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Humanos , Imunização , Malária/imunologia , Vacinas Antimaláricas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
7.
Int J Infect Dis ; 105: 448-451, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33652065

RESUMO

The 11th KAIMRC Annual Research Forum Themed "COVID-19 Vaccine: Global Challenges and Prospects Forum" discussed COVID19 Vaccines. The Forum was a vital event as it provided a hub for leading COVID-19 vaccine scientists, regulators, developers, and distributors to learn about COVID-19 vaccines in development, make decisions about the best vaccines to use, and develop appropriate plans for global distribution and pricing. The COVID-19: Global Efforts for Development, Clinical Trials and Distribution Symposium brought together leading scientists, clinicians, pharma, decision makers, academic institutions and businesses to present and discuss the vaccines that are being currently developed for the COVID19. This event was held to shed light on these vaccines as many are at the late stage of Phase III clinical trials and ready to be marketed. This follows the confusion that few vaccines were produced and pushed into phase III without sharing all the necessary data preventing the scientific and clinical community to judge its efficacy and safety. This event allowed a discussion into the challenges in the distribution, pricing and accessibility of the vaccines. Moreover, the symposium discussed the importance to invest in Biotech-Pharma to combat and overcome any future health crisis. The discussion focused on Saudi Arabia leading initiatives as front runner in the field among G20 members.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Vacinas contra COVID-19/economia , Custos e Análise de Custo , Atenção à Saúde , Desenvolvimento de Medicamentos , Acessibilidade aos Serviços de Saúde , Humanos , Guias de Prática Clínica como Assunto , SARS-CoV-2 , Arábia Saudita
8.
NPJ Vaccines ; 5: 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083027

RESUMO

Malaria remains one of the world's most urgent global health problems, with almost half a million deaths and hundreds of millions of clinical cases each year. Existing interventions by themselves will not be enough to tackle infection in high-transmission areas. The best new intervention would be an effective vaccine; but the leading P. falciparum and P. vivax vaccine candidates, RTS,S and VMP001, show only modest to low field efficacy. New antigens and improved ways for screening antigens for protective efficacy will be required. This study exploits the potential of Virus-Like Particles (VLP) to enhance immune responses to antigens, the ease of coupling peptides to the Q beta (Qß) VLP and the existing murine malaria challenge to screen B-cell epitopes for protective efficacy. We screened P. vivax TRAP (PvTRAP) immune sera against individual 20-mer PvTRAP peptides. The most immunogenic peptides associated with protection were loaded onto Qß VLPs to assess protective efficacy in a malaria sporozoite challenge. A second approach focused on identifying conserved regions within known sporozoite invasion proteins and assessing them as part of the Qß. Using this VLP as a peptide scaffold, four new protective B-cell epitopes were discovered: three from the disordered region of PvTRAP and one from Thrombospondin-related sporozoite protein (TRSP). Antigenic interference between these and other B-cell epitopes was also explored using the virus-like particle/peptide platform. This approach demonstrates the utility of VLPs to help identifying new B-cell epitopes for inclusion in next-generation malaria vaccines.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32587831

RESUMO

Transgenic reporter lines of malaria parasites that express fluorescent or luminescent proteins are valuable tools for drug and vaccine screening assays as well as to interrogate parasite gene function. Different Plasmodium falciparum (Pf ) reporter lines exist, however nearly all have been created in the African NF54/3D7 laboratory strain. Here we describe the generation of novel reporter lines, using CRISPR/Cas9 gene modification, both in the standard Pf NF54 background and in a recently described Cambodian P. falciparum NF135.C10 line. Sporozoites of this line show more effective hepatocyte invasion and enhanced liver merozoite development compared to Pf NF54. We first generated Pf NF54 reporter parasites to analyze two novel promoters for constitutive and high expression of mCherry-luciferase and GFP in blood and mosquito stages. The promoter sequences were selected based on available transcriptome data and are derived from two housekeeping genes, i.e., translation initiation factor SUI1, putative (sui1, PF3D7_1243600) and 40S ribosomal protein S30 (40s, PF3D7_0219200). We then generated and characterized reporter lines in the Pf NF135.C10 line which express GFP driven by the sui1 and 40s promoters as well as by the previously used ef1α promoter (GFP@ef1α, GFP@sui1, GFP@40s). The GFP@40s reporter line showed strongest GFP expression in liver stages as compared to the other two lines. The strength of reporter expression by the 40s promoter throughout the complete life cycle, including liver stages, makes transgenic lines expressing reporters by the 40s promoter valuable novel tools for analyses of P. falciparum.


Assuntos
Genes Reporter , Plasmodium falciparum , Regiões Promotoras Genéticas , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Culicidae , Luciferases/genética , Proteínas Luminescentes/genética , Malária Falciparum , Plasmodium falciparum/genética , Esporozoítos
10.
Front Cell Infect Microbiol ; 10: 591046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392104

RESUMO

Chimeric rodent malaria parasites with the endogenous circumsporozoite protein (csp) gene replaced with csp from the human parasites Plasmodium falciparum (Pf) and P. vivax (Pv) are used in preclinical evaluation of CSP vaccines. Chimeric rodent parasites expressing PfCSP have also been assessed as whole sporozoite (WSP) vaccines. Comparable chimeric P. falciparum parasites expressing CSP of P. vivax could be used both for clinical evaluation of vaccines targeting PvCSP in controlled human P. falciparum infections and in WSP vaccines targeting P. vivax and P. falciparum. We generated chimeric P. falciparum parasites expressing both PfCSP and PvCSP. These Pf-PvCSP parasites produced sporozoite comparable to wild type P. falciparum parasites and expressed PfCSP and PvCSP on the sporozoite surface. Pf-PvCSP sporozoites infected human hepatocytes and induced antibodies to the repeats of both PfCSP and PvCSP after immunization of mice. These results support the use of Pf-PvCSP sporozoites in studies optimizing vaccines targeting PvCSP.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Plasmodium falciparum , Plasmodium vivax , Animais , Anticorpos Antiprotozoários , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética
11.
Infect Immun ; 88(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31740525

RESUMO

Despite promising progress in malaria vaccine development in recent years, an efficacious subunit vaccine against Plasmodium falciparum remains to be licensed and deployed. Cell-mediated protection from liver-stage malaria relies on a sufficient number of antigen-specific T cells reaching the liver during the time that parasites are present. A single vaccine expressing two antigens could potentially increase both the size and breadth of the antigen-specific response while halving vaccine production costs. In this study, we investigated combining two liver-stage antigens, P. falciparum LSA1 (PfLSA1) and PfLSAP2, and investigated the induction of protective efficacy by coadministration of single-antigen vectors or vaccination with dual-antigen vectors, using simian adenovirus and modified vaccinia virus Ankara vectors. The efficacy of these vaccines was assessed in mouse malaria challenge models using chimeric P. berghei parasites expressing the relevant P. falciparum antigens and challenging mice at the peak of the T cell response. Vaccination with a combination of the single-antigen vectors expressing PfLSA1 or PfLSAP2 was shown to improve protective efficacy compared to vaccination with each single-antigen vector alone. Vaccination with dual-antigen vectors expressing both PfLSA1 and PfLSAP2 resulted in responses to both antigens, particularly in outbred mice, and most importantly, the efficacy was equivalent to that of vaccination with a mixture of single-antigen vectors. Based on these promising data, dual-antigen vectors expressing PfLSA1 and PfLSAP2 will now proceed to manufacturing and clinical assessment under good manufacturing practice (GMP) guidelines.


Assuntos
Adenovirus dos Símios/genética , Antígenos de Protozoários/imunologia , Portadores de Fármacos , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Vaccinia virus/genética , Animais , Antígenos de Protozoários/genética , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Proteínas Recombinantes de Fusão/genética , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-31058097

RESUMO

Transgenic malaria parasites expressing fluorescent and bioluminescent proteins are valuable tools to interrogate malaria-parasite biology and to evaluate drugs and vaccines. Using CRISPR/Cas9 methodology a transgenic Plasmodium falciparum (Pf) NF54 line was generated that expresses a fusion of mCherry and luciferase genes under the control of the Pf etramp10.3 gene promoter (line mCherry-luc@etramp10.3). Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. We examined transgene expression throughout the complete life cycle and compared this expression to transgenic lines expressing mCherry-luciferase and GFP-luciferase under control of the constitutive gapdh and eef1a promoters. The mCherry-luc@etramp10.3 parasites express mCherry in gametocytes, sporozoites, and liver-stages. While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology.


Assuntos
Genes Reporter , Luciferases/análise , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Proteínas Recombinantes/análise , Coloração e Rotulagem/métodos , Animais , Fusão Gênica Artificial , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Eritrócitos , Edição de Genes , Perfilação da Expressão Gênica , Humanos , Fígado/parasitologia , Luciferases/genética , Camundongos SCID , Proteínas Recombinantes/genética , Esporozoítos/genética , Esporozoítos/crescimento & desenvolvimento
13.
Front Immunol ; 9: 2780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564231

RESUMO

The last two decades saw a dramatic reduction in malaria incidence rates, but this decrease has been stalling recently, indicating control measures are starting to fail. An effective vaccine, particularly one with a marked effect on disease transmission, would undoubtedly be an invaluable tool for efforts to control and eliminate malaria. RTS,S/AS01, the most advanced malaria vaccine to date, targets the parasite before it invades the liver and has the potential to prevent malaria disease as well as transmission by preventing blood stage infection and therefore gametocytogenesis. Unfortunately efficacy in a phase III clinical trial was limited and it is widely believed that a malaria vaccine needed to contain multiple antigens from different life-cycle stages to have a realistic chance of success. A recent study in mice has shown that partially efficacious interventions targeting the pre-erythrocytic and the sexual lifecycle stage synergise in eliminating malaria from a population over multiple generations. Hence, the combination of RTS,S/AS01 with a transmission blocking vaccine (TBV) is highly appealing as a pragmatic and powerful way to increase vaccine efficacy. Here we demonstrate that combining Pfs25-IMX313, one of the TBV candidates currently in clinical development, with RTS,S/AS01 readily induces a functional immune response against both antigens in outbred CD1 mice. Formulation of Pfs25-IMX313 in AS01 significantly increased antibody titres when compared to formulation in Alhydrogel, resulting in improved transmission reducing activity in standard membrane feeding assays (SMFA). Upon co-formulation of Pfs25-IMX313 with RTS,S/AS01, the immunogenicity of both vaccines was maintained, and functional assessment of the induced antibody response by SMFA and inhibition of sporozoite invasion assay (ISI) showed no reduction in biological activity against parasites of both lifecycle stages. Should this findings be translatable to human vaccination this could greatly aid efforts to eliminate and eventually eradicate malaria.


Assuntos
Formação de Anticorpos/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Eritrócitos/imunologia , Feminino , Estágios do Ciclo de Vida/imunologia , Camundongos , Esporozoítos/imunologia , Vacinação/métodos
14.
Sci Transl Med ; 10(460)2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257955

RESUMO

Despite recent advances in treatment and vector control, malaria is still a leading cause of death, emphasizing the need for an effective vaccine. The malaria life cycle can be subdivided into three stages: the invasion and growth within liver hepatocytes (pre-erythrocytic stage), the blood stage (erythrocytic stage), and, finally, the sexual stage (occurring within the mosquito vector). Antigen (Ag)-specific CD8+ T cells are effectively induced by heterologous prime-boost viral vector immunization and known to correlate with liver-stage protection. However, liver-stage malaria vaccines have struggled to generate and maintain the high numbers of Plasmodium-specific circulating T cells necessary to confer sterile protection. We describe an alternative "prime and target" vaccination strategy aimed specifically at inducing high numbers of tissue-resident memory T cells present in the liver at the time of hepatic infection. This approach bypasses the need for very high numbers of circulating T cells and markedly increases the efficacy of subunit immunization against liver-stage malaria with clinically relevant Ags and clinically tested viral vectors in murine challenge models. Translation to clinical use has begun, with encouraging results from a pilot safety and feasibility trial of intravenous chimpanzee adenovirus vaccination in humans. This work highlights the value of a prime-target approach for immunization against malaria and suggests that this strategy may represent a more general approach for prophylaxis or immunotherapy of other liver infections and diseases.


Assuntos
Imunização , Estágios do Ciclo de Vida , Fígado/parasitologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Animais , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/administração & dosagem , Hepatócitos/imunologia , Hepatócitos/parasitologia , Humanos , Injeções Intravenosas , Malária Falciparum/patologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Ovalbumina/imunologia , Plasmodium berghei/fisiologia , Plasmodium falciparum/crescimento & desenvolvimento , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Esporozoítos/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-30073152

RESUMO

Protection against a malaria infection can be achieved by immunization with live-attenuated Plasmodium sporozoites and while the precise mechanisms of protection remain unknown, T cell responses are thought to be critical in the elimination of infected liver cells. In cancer immunotherapies, agonistic antibodies that target T cell surface proteins, such as CD27, OX40 (CD134), and 4-1BB (CD137), have been used to enhance T cell function by increasing co-stimulation. In this study, we have analyzed the effect of agonistic OX40 monoclonal antibody treatment on protective immunity induced in mice immunized with genetically attenuated parasites (GAPs). OX40 stimulation enhanced protective immunity after vaccination as shown by an increase in the number of protected mice and delay to blood-stage infection after challenge with wild-type sporozoites. Consistent with the enhanced protective immunity enforced OX40 stimulation resulted in an increased expansion of antigen-experienced effector (CD11ahiCD44hi) CD8+ and CD4+ T cells in the liver and spleen and also increased IFN-γ and TNF producing CD4+ T cells in the liver and spleen. In addition, GAP immunization plus α-OX40 treatment significantly increased sporozoite-specific IgG responses. Thus, we demonstrate that targeting T cell costimulatory receptors can improve sporozoite-based vaccine efficacy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Imunidade Celular , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Receptores OX40/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Fígado/imunologia , Camundongos , Receptores OX40/imunologia , Baço/imunologia , Resultado do Tratamento , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
16.
NPJ Vaccines ; 3: 33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155278

RESUMO

There is a pressing need for safe and highly effective Plasmodium falciparum (Pf) malaria vaccines. The circumsporozoite protein (CS), expressed on sporozoites and during early hepatic stages, is a leading target vaccine candidate, but clinical efficacy has been modest so far. Conversely, whole-sporozoite (WSp) vaccines have consistently shown high levels of sterilizing immunity and constitute a promising approach to effective immunization against malaria. Here, we describe a novel WSp malaria vaccine that employs transgenic sporozoites of rodent P. berghei (Pb) parasites as cross-species immunizing agents and as platforms for expression and delivery of PfCS (PbVac). We show that both wild-type Pb and PbVac sporozoites unabatedly infect and develop in human hepatocytes while unable to establish an infection in human red blood cells. In a rabbit model, similarly susceptible to Pb hepatic but not blood infection, we show that PbVac elicits cross-species cellular immune responses, as well as PfCS-specific antibodies that efficiently inhibit Pf sporozoite liver invasion in human hepatocytes and in mice with humanized livers. Thus, PbVac is safe and induces functional immune responses in preclinical studies, warranting clinical testing and development.

17.
Malar J ; 17(1): 288, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30092798

RESUMO

BACKGROUND: Rodent malaria parasites where the gene encoding circumsporozoite protein (CSP) has been replaced with csp genes from the human malaria parasites, Plasmodium falciparum or Plasmodium vivax, are used as pre-clinical tools to evaluate CSP vaccines in vivo. These chimeric rodent parasites produce sporozoites in Anopheles stephensi mosquitoes that are capable of infecting rodent and human hepatocytes. The availability of chimeric P. falciparum parasites where the pfcsp gene has been replaced by the pvcsp would open up possibilities to test P. vivax CSP vaccines in small scale clinical trials using controlled human malaria infection studies. METHODS: Using CRISPR/Cas9 gene editing two chimeric P. falciparum parasites, were generated, where the pfcsp gene has been replaced by either one of the two major pvcsp alleles, VK210 or VK247. In addition, a P. falciparum parasite line that lacks CSP expression was also generated. These parasite lines have been analysed for sporozoite production in An. stephensi mosquitoes. RESULTS: The two chimeric Pf-PvCSP lines exhibit normal asexual and sexual blood stage development in vitro and produce sporozoite-containing oocysts in An. stephensi mosquitoes. Expression of the corresponding PvCSP was confirmed in oocyst-derived Pf-PvCSP sporozoites. However, most oocysts degenerate before sporozoite formation and sporozoites were not found in either the mosquito haemocoel or salivary glands. Unlike the chimeric Pf-PvCSP parasites, oocysts of P. falciparum parasites lacking CSP expression do not produce sporozoites. CONCLUSIONS: Chimeric P. falciparum parasites expressing P. vivax circumsporozoite protein fail to produce salivary gland sporozoites. Combined, these studies show that while PvCSP can partially complement the function of PfCSP, species-specific features of CSP govern full sporozoite maturation and development in the two human malaria parasites.


Assuntos
Anopheles/parasitologia , Quimera/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Esporozoítos/fisiologia , Animais , Expressão Gênica , Plasmodium vivax/genética , Proteínas de Protozoários/metabolismo , Glândulas Salivares/parasitologia
18.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986894

RESUMO

Vivax malaria remains one of the most serious and neglected tropical diseases, with 132 to 391 million clinical cases per year and 2.5 billion people at risk of infection. A vaccine against Plasmodium vivax could have more impact than any other intervention, and the use of a vaccine targeting multiple antigens may result in higher efficacy against sporozoite infection than targeting a single antigen. Here, two leading P. vivax preerythrocytic vaccine candidate antigens, the P. vivax circumsporozoite protein (PvCSP) and the thrombospondin-related adhesion protein (PvTRAP) were delivered as a combined vaccine. This strategy provided a dose-sparing effect, with 100% sterile protection in mice using doses that individually conferred low or no protection, as with the unadjuvanted antigens PvTRAP (0%) and PvCSP (50%), and reached protection similar to that of adjuvanted components. Efficacy against malaria infection was assessed using a new mouse challenge model consisting of a double-transgenic Plasmodium berghei parasite simultaneously expressing PvCSP and PvTRAP used in mice immunized with the virus-like particle (VLP) Rv21 previously reported to induce high efficacy in mice using Matrix-M adjuvant, while PvTRAP was concomitantly administered in chimpanzee adenovirus and modified vaccinia virus Ankara (MVA) vectors (viral-vectored TRAP, or vvTRAP) to support effective induction of T cells. We examined immunity elicited by these vaccines in the context of two adjuvants approved for human use (AddaVax and Matrix-M). Matrix-M supported the highest anti-PvCSP antibody titers when combined with Rv21, and, interestingly, mixing PvCSP Rv21 and PvTRAP viral vectors enhanced immunity to malaria over levels provided by single vaccines.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Adenoviridae/genética , Adjuvantes Imunológicos , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Feminino , Vetores Genéticos , Malária Vivax/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Polissorbatos/administração & dosagem , Proteínas de Protozoários/administração & dosagem , Saponinas/administração & dosagem , Esqualeno/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vaccinia virus/genética
19.
Sci Rep ; 8(1): 3896, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497047

RESUMO

With the increasing prevalence of artemisinin-resistant malaria parasites, a highly efficacious and durable vaccine for malaria is urgently required. We have developed an experimental virus-vectored vaccine platform based on an envelope-modified baculovirus dual-expression system (emBDES). Here, we show a conceptually new vaccine platform based on an adenovirus-prime/emBDES-boost heterologous immunization regimen expressing the Plasmodium falciparum circumsporozoite protein (PfCSP). A human adenovirus 5-prime/emBDES-boost heterologous immunization regimen consistently achieved higher sterile protection against transgenic P. berghei sporozoites expressing PfCSP after a mosquito-bite challenge than reverse-ordered or homologous immunization. This high protective efficacy was also achieved with a chimpanzee adenovirus 63-prime/emBDES-boost heterologous immunization regimen against an intravenous sporozoite challenge. Thus, we show that the adenovirus-prime/emBDES-boost heterologous immunization regimen confers sterile protection against sporozoite challenge by two individual routes, providing a promising new malaria vaccine platform for future clinical use.


Assuntos
Vacinas Antimaláricas/imunologia , Esporozoítos/imunologia , Vacinação/métodos , Adenoviridae/imunologia , Infecções por Adenoviridae , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Baculoviridae/imunologia , Modelos Animais de Doenças , Feminino , Imunização/métodos , Imunização Secundária/métodos , Malária/imunologia , Malária Falciparum/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vacinas de DNA/imunologia
20.
Sci Rep ; 7(1): 17011, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209029

RESUMO

A large research effort is currently underway to find an effective and affordable malaria vaccine. Tools that enable the rapid evaluation of protective immune responses are essential to vaccine development as they can provide selection criteria to rank order vaccine candidates. In this study we have revisited the Inhibition of Sporozoite Invasion (ISI) assay to assess the ability of antibodies to inhibit sporozoite infection of hepatocytes. By using GFP expressing sporozoites of the rodent parasite P. berghei we are able to robustly quantify parasite infection of hepatocyte cell lines by flow cytometry. In conjunction with recently produced transgenic P. berghei parasites that express P. falciparum sporozoite antigens, we have been able to use this assay to measure antibody mediated inhibition of sporozoite invasion against one of the lead malaria antigens P. falciparum CSP. By combining chimeric rodent parasites expressing P. falciparum antigens and a flow cytometric readout of infection, we are able to robustly assess vaccine-induced antibodies, from mice, rhesus macaques and human clinical trials, for their functional ability to block sporozoite invasion of hepatocytes.


Assuntos
Anticorpos Bloqueadores/imunologia , Anticorpos Antiprotozoários/sangue , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Células Cultivadas , Feminino , Hepatócitos/imunologia , Hepatócitos/parasitologia , Humanos , Técnicas In Vitro , Macaca mulatta , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...