Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Neurosci ; 47(3): 195-208, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38220554

RESUMO

Over the past six decades, the use of ketamine has evolved from an anesthetic and recreational drug to the first non-monoaminergic antidepressant approved for treatment-resistant major depressive disorder (MDD). Subanesthetic doses of ketamine and its enantiomer (S)-ketamine (esketamine) directly bind to several neurotransmitter receptors [including N-methyl-d-aspartic acid receptor (NMDAR), κ and µ opioid receptor (KOR and MOR)] widely distributed in the brain and across different cell types, implicating several potential molecular mechanisms underlying the action of ketamine as an antidepressant. This review examines preclinical studies investigating cell-type-specific mechanisms underlying the effects of ketamine on behavior and synapses. Cell-type-specific approaches are crucial for disentangling the critical mechanisms involved in the therapeutic effect of ketamine.


Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Ketamina/farmacologia , Ketamina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato
2.
Nat Commun ; 14(1): 4965, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587100

RESUMO

Astrocytes are intimately linked with brain blood vessels, an essential relationship for neuronal function. However, astroglial factors driving these physical and functional associations during postnatal brain development have yet to be identified. By characterizing structural and transcriptional changes in mouse cortical astrocytes during the first two postnatal weeks, we find that high-mobility group box 1 (Hmgb1), normally upregulated with injury and involved in adult cerebrovascular repair, is highly expressed in astrocytes at birth and then decreases rapidly. Astrocyte-selective ablation of Hmgb1 at birth affects astrocyte morphology and endfoot placement, alters distribution of endfoot proteins connexin43 and aquaporin-4, induces transcriptional changes in astrocytes related to cytoskeleton remodeling, and profoundly disrupts endothelial ultrastructure. While lack of astroglial Hmgb1 does not affect the blood-brain barrier or angiogenesis postnatally, it impairs neurovascular coupling and behavior in adult mice. These findings identify astroglial Hmgb1 as an important player in postnatal gliovascular maturation.


Assuntos
Astrócitos , Barreira Hematoencefálica , Proteína HMGB1 , Animais , Camundongos , Aquaporina 4 , Encéfalo , Morfogênese , Proteína HMGB1/metabolismo
3.
J Affect Disord ; 326: 193-197, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717031

RESUMO

BACKGROUND: Recent research implicates fibroblast growth factor 2 (FGF2) in anxiety and depressive symptoms of childhood. This study is the first to examine an intergenerational pathway linking FGF2 levels in mothers to FGF2 levels in children, and to the children's anxiety and depressive symptoms. METHODS: We assayed serum FGF2 in 259 mothers and their children, with a range of anxiety and depressive symptoms: 194 were mothers of clinic-referred anxious and depressed children; 65 were mothers of non-referred children. We examined associations between FGF2 levels in mothers and children, and anxiety and depression symptoms. We used structural equation modeling (SEM) to examine associations between maternal and child FGF2 levels, and between maternal and child FGF2 levels and symptoms of anxiety and depression in and children. RESULTS: FGF2 levels in mothers and children were significantly positively correlated. Children's FGF2 levels were significantly negatively correlated with their ratings of anxiety and depression. Results of the SEM model showed that increases in maternal FGF2 levels were significantly associated with increases in child FGF2, which in turn was associated with decreases in child anxiety and child depression, controlling for maternal anxiety and depression. LIMITATIONS: We relied on self-reported ratings of anxiety and depression, and on a single measurement of FGF2 levels for each participant. CONCLUSIONS: Our results point to a role for FGF2 in the intergenerational transmission of risk for, and resilience to, anxiety and depression in youth.


Assuntos
Depressão , Fator 2 de Crescimento de Fibroblastos , Feminino , Adolescente , Humanos , Criança , Ansiedade , Transtornos de Ansiedade/diagnóstico , Mães , Relações Mãe-Filho
4.
Cell Rep ; 38(5): 110310, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108542

RESUMO

Astroglial cells are key players in the development and maintenance of neurons and neuronal networks. Astroglia express steroid hormone receptors and show rapid responses to hormonal manipulations. However, despite important sex differences in the cortex and hippocampus, few studies have examined sex differences in astroglial cells in telencephalic development. To characterize the cortical astroglial translatome in male and female mice across postnatal development, we use translating ribosome affinity purification together with RNA sequencing and immunohistochemistry to phenotype astroglia at six developmental time points. Overall, we find two distinct astroglial phenotypes between early (P1-P7) and late development (P14-adult), independent of sex. We also find sex differences in gene expression patterns across development that peak at P7 and appear to result from males reaching a mature astroglial phenotype earlier than females. These developmental sex differences could have an impact on the construction of neuronal networks and windows of vulnerability to perturbations and disease.


Assuntos
Astrócitos/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Caracteres Sexuais , Animais , Células Cultivadas , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neocórtex/metabolismo
5.
Front Cell Neurosci ; 15: 644126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093129

RESUMO

Astrocytes comprise a heterogeneous cell population characterized by distinct morphologies, protein expression and function. Unlike neurons, astrocytes do not generate action potentials, however, they are electrically dynamic cells with extensive electrophysiological heterogeneity and diversity. Astrocytes are hyperpolarized cells with low membrane resistance. They are heavily involved in the modulation of K+ and express an array of different voltage-dependent and voltage-independent channels to help with this ion regulation. In addition to these K+ channels, astrocytes also express several different types of Na+ channels; intracellular Na+ signaling in astrocytes has been linked to some of their functional properties. The physiological hallmark of astrocytes is their extensive intracellular Ca2+ signaling cascades, which vary at the regional, subregional, and cellular levels. In this review article, we highlight the physiological properties of astrocytes and the implications for their function and influence of network and synaptic activity. Furthermore, we discuss the implications of these differences in the context of optogenetic and DREADD experiments and consider whether these tools represent physiologically relevant techniques for the interrogation of astrocyte function.

6.
Channels (Austin) ; 15(1): 179-192, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33509021

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are excitatory ionotropic glutamate receptors expressed throughout the CNS, including in the spinal dorsal horn. The GluN2 subtypes of NMDAR subunit, which include GluN2A, GluN2B, and GluN2D in the dorsal horn, confer NMDARs with structural and functional variability, enabling heterogeneity in synaptic transmission and plasticity. Despite essential roles for NMDARs in physiological and pathological pain processing, the distribution and function of these specific GluN2 isoforms across dorsal horn laminae remain poorly understood. Surprisingly, there is a complete lack of knowledge of GluN2 expression in female rodents. We, therefore, investigated the relative expression of specific GluN2 variants in the dorsal horn of lumbar (L4/L5) spinal cord from both male and female rats. In order to detect synaptic GluN2 isoforms, we used pepsin antigen-retrieval to unmask these highly cross-linked protein complexes. We found that GluN2B and GluN2D are preferentially localized to the pain-processing superficial regions of the dorsal horn in males, while only GluN2B is predominantly localized to the superficial dorsal horn of female rats. The GluN2A subunit is diffusely localized to neuropil throughout the dorsal horn of both males and females, while GluN2B and GluN2D immunolabelling are found both in the neuropil and on the soma of dorsal horn neurons. Finally, we identified an unexpected enhanced expression of GluN2B in the medial division of the superficial dorsal horn, but in males only. These sex-specific localization patterns of GluN2-NMDAR subunits across dorsal horn laminae have significant implications for the understanding of divergent spinal mechanisms of pain processing.


Assuntos
Receptores de N-Metil-D-Aspartato , Animais , Potenciais Pós-Sinápticos Excitadores , Ratos , Sinapses , Transmissão Sináptica
7.
J Affect Disord ; 282: 611-616, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33445083

RESUMO

BACKGROUND: Research links fibroblast growth factor 2 (FGF2) to anxiety and depression in rodents and human adults. Our study is the first to examine FGF2 levels in a pediatric population. METHODS: We assayed serum FGF2 in 163 children with a broad range of anxiety and depressive symptoms; 111 were clinic-referred anxious and depressed children; 52 were non-referred children. We examined associations between FGF2 and anxiety and depression symptoms, and between each of the three facets of behavioral activation (Reward-Responsiveness, Drive, Fun-Seeking) and behavioral avoidance. We used confirmatory factor analysis (CFA) to determine the relative contribution of anxiety and depression indicators and of FGF2 to a latent variable of Anxiety/Depression. We also examined stability of FGF2 levels. RESULTS: FGF2 levels in clinic-referred children were significantly lower compared with non-referred children. Bivariate correlations and CFA showed negative associations between FGF2 and anxiety, depression and behavioral avoidance. FGF2 levels were positively correlated with the Reward-Responsiveness facet of behavioral activation, implicated in depression. FGF2 levels were stable over six months. LIMITATIONS: We did not have data on behavioral avoidance and stability of FGF2 in the entire sample. CONCLUSIONS: Our results implicate FGF2 in anxiety and depression in children, providing an important first step in showing FGF2 may serve as a stable biomarker for these prevalent and impairing problems.


Assuntos
Transtornos do Comportamento Infantil , Depressão , Adulto , Ansiedade , Transtornos de Ansiedade , Criança , Fator 2 de Crescimento de Fibroblastos , Humanos
8.
Nature ; 590(7845): 315-319, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33328636

RESUMO

Effective pharmacotherapy for major depressive disorder remains a major challenge, as more than 30% of patients are resistant to the first line of treatment (selective serotonin reuptake inhibitors)1. Sub-anaesthetic doses of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist2,3, provide rapid and long-lasting antidepressant effects in these patients4-6, but the molecular mechanism of these effects remains unclear7,8. Ketamine has been proposed to exert its antidepressant effects through its metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK)9. The antidepressant effects of ketamine and (2R,6R)-HNK in rodents require activation of the mTORC1 kinase10,11. mTORC1 controls various neuronal functions12, particularly through cap-dependent initiation of mRNA translation via the phosphorylation and inactivation of eukaryotic initiation factor 4E-binding proteins (4E-BPs)13. Here we show that 4E-BP1 and 4E-BP2 are key effectors of the antidepressant activity of ketamine and (2R,6R)-HNK, and that ketamine-induced hippocampal synaptic plasticity depends on 4E-BP2 and, to a lesser extent, 4E-BP1. It has been hypothesized that ketamine activates mTORC1-4E-BP signalling in pyramidal excitatory cells of the cortex8,14. To test this hypothesis, we studied the behavioural response to ketamine and (2R,6R)-HNK in mice lacking 4E-BPs in either excitatory or inhibitory neurons. The antidepressant activity of the drugs is mediated by 4E-BP2 in excitatory neurons, and 4E-BP1 and 4E-BP2 in inhibitory neurons. Notably, genetic deletion of 4E-BP2 in inhibitory neurons induced a reduction in baseline immobility in the forced swim test, mimicking an antidepressant effect. Deletion of 4E-BP2 specifically in inhibitory neurons also prevented the ketamine-induced increase in hippocampal excitatory neurotransmission, and this effect concurred with the inability of ketamine to induce a long-lasting decrease in inhibitory neurotransmission. Overall, our data show that 4E-BPs are central to the antidepressant activity of ketamine.


Assuntos
Antidepressivos/farmacologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Ketamina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Ketamina/análogos & derivados , Ketamina/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Mutação , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Neurônios/classificação , Neurônios/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Transmissão Sináptica/efeitos dos fármacos
9.
Front Neuroendocrinol ; 60: 100897, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359797

RESUMO

Astroglial cells are the most abundant cell type in the mammalian brain. They are implicated in almost every aspect of brain physiology, including maintaining homeostasis, building and maintaining the blood brain barrier, and the development and maturation of neuronal networks. Critically, astroglia also express receptors for gonadal sex hormones, respond rapidly to gonadal hormones, and are able to synthesize hormones. Thus, they are positioned to guide and mediate sexual differentiation of the brain, particularly neuronal networks in typical and pathological conditions. In this review, we describe astroglial involvement in the organization and development of the brain, and consider known sex differences in astroglial responses to understand how astroglial cell-mediated organization may play a role in forebrain sexual dimorphisms in human populations. Finally, we consider how sexually dimorphic astroglial responses and functions in development may lead to sex differences in vulnerability for neuropsychiatric disorders.


Assuntos
Astrócitos , Transtornos Mentais , Animais , Encéfalo , Feminino , Humanos , Masculino , Sistemas Neurossecretores , Prosencéfalo , Caracteres Sexuais
10.
Neuroscience ; 429: 23-32, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917341

RESUMO

Environmental enrichment has been shown to increase cognitive abilities and accelerate recovery from a number of disease states. Typically, enrichment protocols last from four to eight weeks, however, it has previously been shown that two weeks of environmental enrichment is sufficient to increase cognitive abilities and the proliferation of the astroglial stem cell pool in juvenile mice. The current study examines whether a short-term enrichment protocol can induce similar effects in adults as compared to juveniles. Using juvenile and adult wild-type mice, we examined the effects of short-term environmental enrichment (including a running wheel) on cognitive abilities, anxiety-like behaviour, and the stem cell potential of sub-ventricular neural stem cells (NSC's) in vitro using neurosphere assays. We found that short-term environmental enrichment decreased anxiety behaviour and increased overall memory abilities similarly in juveniles and adults. However, the rate of acquisition on the Morris water maze, hippocampal Sox2 and Ki67 expression, and neurosphere potential increased in response to enrichment only in juveniles, suggesting that the effects of enrichment on these measures are age dependant. Together, these data suggest that the potential beneficial effects of environmental manipulations decrease with age.


Assuntos
Meio Ambiente , Hipocampo , Animais , Ansiedade , Aprendizagem em Labirinto , Memória , Camundongos , Neurogênese
11.
J Exp Neurosci ; 13: 1179069519870182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452604

RESUMO

The neuroplasticity hypothesis of depression proposes that major depressive disorders are related to decreased hippocampal and cortical neural plasticity, which is reversed by antidepressant treatment. Astroglial cells have emerged as key mediators of neural plasticity and are involved in the cause and treatment of depression and anxiety-like behaviors. One of the ways that astroglia modulate neuroplasticity is through the formation and maintenance of perineuronal nets (PNNs). Perineuronal nets are important extracellular matrix components that respond to stress and are implicated in anxiety-like behaviors. Normally, astroglial cells continuously turnover PNNs by degrading and donating PNN proteins; however, chronic stress slows PNN protein degradation and increases cortical PNN expression overall. In this report, we used weighted gene co-expression network analysis and eigengene analysis to further delineate the pathways and key regulators involved in the astroglial-PNN relationship following chronic stress. Our analyses indicate that chronic variable stress induces the expression of PNNs through inhibition of trophic pathways and key transcription factors in astroglial cells. These data further support the integral role of astroglial cells in the neuroplasticity hypothesis of depression through their modulation of anxiety-like behaviors and PNNs.

12.
Neurobiol Stress ; 11: 100179, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31304199

RESUMO

The impact of psychological stressors on the progression of motor and non-motor disturbances observed in Parkinson's disease (PD) has received little attention. Given that PD likely results from many different environmental "hits", we were interested in whether a chronic unpredictable stressor regimen would act additively or possibly even synergistically to augment the impact of the toxicant, paraquat, which has previously been linked to PD. Our findings support the contention that paraquat itself acted as a systemic stressor, with the pesticide increasing plasma corticosterone, as well as altering glucocorticoid receptor (GR) expression in the hippocampus. Furthermore, stressed mice that also received paraquat displayed synergistic motor coordination impairment on a rotarod test and augmented signs of anhedonia (sucrose preference test). The individual stressor and paraquat treatments also caused a range of non-motor (e.g. open field, Y and plus mazes) deficits, but there were no signs of an interaction (neither additive nor synergistic) between the insults. Similarly, paraquat caused the expected loss of substantia nigra dopamine neurons and microglial activation, but this effect was not further influenced by the chronic stressor. Taken together, these results indicate that paraquat has many effects comparable to that of a more traditional stressor and that at least some behavioral measures (i.e. sucrose preference and rotarod) are augmented by the combined pesticide and stress treatments. Thus, although psychological stressors might not necessarily increase the neurodegenerative effects of the toxicant exposure, they may promote co-morbid behaviors pathology.

13.
PLoS One ; 13(10): e0204980, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273396

RESUMO

Previous research has shown that fibroblast growth factor 2 protein (FGF2) can act as an anxiolytic and anti-depressive agent in rodents. Levels of hippocampal FGF2 and FGF2 receptors are decreased in post-mortem brains of individuals with mood disorders. No changes in FGF2 were noted in the post-mortem brains of individuals with mood disorders that were successfully treated with anti-depressant medication prior to death. Mutations in the FGF2 gene in humans have been shown to predict non-responsiveness to the therapeutic effects of selective serotonin reuptake inhibitors (SSRIs). These findings suggest that FGF2 may potentially be a target of and/or required for the therapeutic effects of antidepressant medications. To test this, we employed a rodent model of depressive behaviour, chronic variable stress (CVS) in conjunction with antidepressant treatment (fluoxetine) in wild-type (WT) and FGF2 knockout mice (FGF2KO) and examined depressive and anxiety behaviors. Results showed that fluoxetine reversed the effects of CVS on depressive and anxiety behaviours in wild-type mice only, suggesting that the FGF2 gene is indeed necessary for the therapeutic effects of fluoxetine. Interestingly, CVS decreased hippocampal FGF2 levels and fluoxetine partially reversed this effect. Because FGF2 has been previously shown to modify HPA activity through hippocampal glucocorticoid receptors (GR), we examined levels of glucocorticoid receptors and found a decrease in GR in response to CVS, with a further decrease in FGF2KO. No effect of fluoxetine on GR was observed in either WT or FGF2KO mice. This suggests that further changes in glucocorticoid receptors are not necessary for the anti-depressant effects of fluoxetine in WT mice, although decreased glucocorticoid receptors in response to FGF2 deletion may preclude the therapeutic actions of fluoxetine in FGF2KO. Whether astroglia, astroglial functions, or HPA changes are the downstream target of FGF2-mediated changes induced by fluoxetine remains to be determined, however, the current study reaffirms the potential of FGF2 as a novel therapeutic target in the treatment of depression and anxiety disorders.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos/genética , Fluoxetina/uso terapêutico , Animais , Antidepressivos/farmacologia , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/patologia , Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/deficiência , Fluoxetina/farmacologia , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Projetos Piloto , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
14.
Neuropsychopharmacology ; 43(9): 1961-1971, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29907879

RESUMO

Recent studies have suggested that cortical astroglia play an important role in depressive-like behaviors. Potential astroglial contributions have been proposed based on their known neuroplastic functions, such as glutamate recycling and synaptic plasticity. However, the specific mechanisms by which astroglial cells may contribute or protect against a depressive phenotype remain unknown. To delineate astroglial changes that accompany depressive-like behavior, we used astroglial-specific bacTRAP mice exposed to chronic variable stress (CVS) and profiled the astroglial translatome using translating ribosome affinity purification (TRAP) in conjunction with RNAseq. As expected, CVS significantly increased anxiety- and depressive-like behaviors and corticosterone levels and decreased GFAP expression in astroglia, although this did not reflect a change in the total number of astroglial cells. TRAPseq results showed that CVS decreased genes associated with astroglial plasticity: RhoGTPases, growth factor signaling, and transcription regulation, and increased genes associated with the formation of extracellular matrices such as perineuronal nets (PNNs). PNNs inhibit neuroplasticity and astroglia contribute to the formation, organization, and maintenance of PNNs. To validate our TRAPseq findings, we showed an increase in PNNs following CVS. Degradation of PNNs in the prefrontal cortex of mice exposed to CVS reversed the CVS-induced behavioral phenotype in the forced swim test. These data lend further support to the neuroplasticity hypothesis of depressive behaviors and, in particular, extend this hypothesis beyond neuronal plasticity to include an overall decrease in genes associated with cortical astroglial plasticity following CVS. Further studies will be needed to assess the antidepressant potential of directly targeting astroglial cell function in models of depression.


Assuntos
Astrócitos/metabolismo , Córtex Pré-Frontal/metabolismo , Biossíntese de Proteínas , Estresse Psicológico/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Astrócitos/patologia , Doença Crônica , Corticosterona/metabolismo , Depressão/metabolismo , Depressão/patologia , Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/patologia , Estresse Psicológico/patologia , Incerteza
15.
Biol Psychiatry ; 80(6): 479-489, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27133954

RESUMO

BACKGROUND: Despite strong evidence linking fibroblast growth factor 2 (FGF2) with anxiety and depression in both rodents and humans, the molecular mechanisms linking FGF2 with anxiety are not understood. METHODS: We compare 1) mice that lack a functional Fgf2 gene (Fgf2 knockout [KO]), 2) wild-type mice, and 3) Fgf2 KO with adult rescue by FGF2 administration on measures of anxiety, depression, and motor behavior, and further investigate the mechanisms of this behavior by cellular, molecular, and neuroendocrine studies. RESULTS: We demonstrate that Fgf2 KO mice have increased anxiety, decreased hippocampal glucocorticoid receptor (GR) expression, and increased hypothalamic-pituitary-adrenal axis activity. FGF2 administration in adulthood was sufficient to rescue the entire phenotype. Blockade of GR in adult mice treated with FGF2 precluded the therapeutic effects of FGF2 on anxiety behavior, suggesting that GR is necessary for FGF2 to regulate anxiety behavior. The level of Egr-1/NGFI-A was decreased in Fgf2 KO mice and was reestablished with FGF2 treatment. By chromatin immunoprecipitation studies, we found decreased binding of EGR-1 to the GR promoter region in Fgf2 KO mice. Finally, we examined anxiety behavior in FGF receptor (FGFR) KO mice; however, FGFR1, FGFR2, and FGFR3 KO mice did not mimic the phenotype of Fgf2 KO mice, suggesting a role for other receptor subtypes (i.e., FGFR5). CONCLUSIONS: These data suggest that FGF2 levels are critically related to anxiety behavior and hypothalamic-pituitary-adrenal axis activity, likely through modulation of hippocampal glucocorticoid receptor expression, an effect that is likely receptor mediated, albeit not by FGFR1, FGFR2, and FGFR3.


Assuntos
Ansiedade/metabolismo , Ansiedade/psicologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Receptores de Glucocorticoides/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/fisiologia , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Mifepristona/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/biossíntese
16.
Neurosci Lett ; 604: 12-7, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26222256

RESUMO

1-2% of live births are to very low birth weight, premature infants that often show a developmental trajectory plagued with neurological sequelae including ventriculomegaly and significant decreases in cortical volume. We are able to recapitulate these sequelae using a mouse model of hypoxia where early postnatal pups are exposed to chronic hypoxia for one week. However, because the timing of hypoxic exposure occurs so early in development, dams and pups are housed together in the hypoxic chamber, and therefore, dams are also subjected to the same hypoxic conditions as the pups. To understand the relative contribution of hypoxia directly on the pups as opposed to the indirect contribution mediated by the effects of hypoxia and potential alterations in the dam's care of the pups, we examined whether reducing the dams exposure to hypoxia may significantly increase pup outcomes on measures that we have found consistently changed immediately following chronic hypoxia exposure. To achieve this, we rotated dams between normoxic and hypoxic conditions, leaving the litters untouched in their respective conditions and compared gross anatomical measures of normoxic and hypoxic pups with non-rotating or rotating mothers. As we expected, hypoxic-rearing decreased pup body weight, brain weight and cortical volume. Reducing the dam's exposure to hypoxic conditions actually amplified the effects of hypoxia on body weight, such that hypoxic pups with rotating mothers showed significantly less growth. Interestingly, rotation of hypoxic mothers did not have the same deleterious effect on brain weight, suggesting the presence of compensatory mechanisms conserving brain weight and development even under extremely low body weight conditions. The factors that potentially contribute to these compensatory changes remain to be determined, however, nutrition, pup feeding/metabolism, or changes in maternal care are important candidates, acting either together or independently to change pup body and brain development.


Assuntos
Peso Corporal , Encéfalo/crescimento & desenvolvimento , Hipóxia/metabolismo , Complicações na Gravidez/metabolismo , Animais , Encéfalo/patologia , Contagem de Células , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Feminino , Exposição Materna , Troca Materno-Fetal , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia
17.
Nat Neurosci ; 17(7): 908-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880214

RESUMO

We found that leptin receptors were expressed in hypothalamic astrocytes and that their conditional deletion led to altered glial morphology and synaptic inputs onto hypothalamic neurons involved in feeding control. Leptin-regulated feeding was diminished, whereas feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data reveal an active role of glial cells in hypothalamic synaptic remodeling and control of feeding by leptin.


Assuntos
Astrócitos/fisiologia , Ingestão de Alimentos/fisiologia , Hipotálamo/fisiologia , Leptina/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Contagem de Células , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipotálamo/citologia , Imuno-Histoquímica , Hibridização In Situ , Leptina/genética , Masculino , Melanocortinas/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Cultura Primária de Células , Pró-Opiomelanocortina/fisiologia , Troca Gasosa Pulmonar/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
18.
Clin Perinatol ; 41(1): 229-39, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24524457

RESUMO

The incidence of preterm birth is on the rise. The outcome of premature birth can vary widely, spanning completely normal development to severe neurologic deficits, with most children showing mild to moderate cognitive delay and increased incidence of neuropsychiatric conditions such as anxiety, attention deficit hyperactivity, and autism spectrum disorders. Several animal models have been employed to study the consequences of prematurity, one of the most promising being chronic perinatal hypoxia in mouse, which recapitulates the cognitive impairments, partial recovery over time and enhanced recovery with environmental enrichment.


Assuntos
Astrócitos/citologia , Lesões Encefálicas/fisiopatologia , Encéfalo/crescimento & desenvolvimento , Deficiências do Desenvolvimento/fisiopatologia , Hipóxia Encefálica/fisiopatologia , Neurogênese/fisiologia , Animais , Encéfalo/embriologia , Modelos Animais de Doenças , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso
19.
Nat Neurosci ; 17(3): 341-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24569830

RESUMO

Every year in the United States, an estimated 500,000 babies are born preterm (before 37 completed weeks of gestation), and this number is rising, along with the recognition of brain injuries due to preterm delivery. A common underlying pathogenesis appears to be perinatal hypoxia induced by immature lung development, which causes injury to vulnerable neurons and glia. Abnormal growth and maturation of susceptible cell types, particularly neurons and oligodendrocytes, in preterm babies with very low birth weight is associated with decreased cerebral and cerebellar volumes and increases in cerebral ventricular size. Here we reconcile these observations with recent studies using models of perinatal hypoxia that show perturbations in the maturation and function of interneurons, oligodendrocytes and astroglia. Together, these findings suggest that the global mechanism by which perinatal hypoxia alters development is through a delay in maturation of affected cell types, including astroglia, oligodendroglia and neurons.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Hipóxia Fetal/complicações , Doenças do Prematuro/fisiopatologia , Neuroglia/citologia , Neurônios/citologia , Animais , Astrócitos/citologia , Lesões Encefálicas/etiologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/etiologia , Doenças do Prematuro/patologia , Oligodendroglia/citologia
20.
J Neurosci ; 33(33): 13375-87, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23946395

RESUMO

Infants born premature experience hypoxic episodes due to immaturity of their respiratory and central nervous systems. This profoundly affects brain development and results in cognitive impairments. We used a mouse model to examine the impact of hypoxic rearing (9.5-10.5% O2) from postnatal day 3 to 11 (P3-P11) on GABAergic interneurons and the potential for environmental enrichment to ameliorate these developmental abnormalities. At P15 the numbers of cortical interneurons expressing immunohistochemically detectable levels of parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide were decreased in hypoxic-reared mice by 59%, 32%, and 38%, respectively, compared with normoxic controls. Hypoxia also decreased total GABA content in frontal neocortex by 31%. However, GAD67-EGFP knock-in mice reared under hypoxic conditions showed no changes in total number of GAD67-EGFP(+) cells and no evidence of increased interneuron death, suggesting that the total number of interneurons was not decreased, but rather, that hypoxic-rearing decreased interneuron marker expression in these cells. In adulthood, PV and SST expression levels were decreased in hypoxic-reared mice. In contrast, intensity of reelin (RLN) expression was significantly increased in adult hypoxic-reared mice compared with normoxic controls. Housing mice in an enriched environment from P21 until adulthood normalized phenotypic interneuron marker expression without affecting total interneuron numbers or leading to increased neurogenesis. Our data show that (1) hypoxia decreases PV and SST and increases RLN expression in cortical interneurons during postnatal cortical development and (2) enriched environment has the capacity to normalize the interneuron abnormalities in cortex.


Assuntos
Córtex Cerebral/patologia , Hipóxia/patologia , Interneurônios/patologia , Prosencéfalo/patologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Técnicas de Introdução de Genes , Abrigo para Animais , Imuno-Histoquímica , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Prosencéfalo/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...