Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(21): 34789-34799, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859227

RESUMO

With the development of nanometer accuracy stitching interferometry, ion beam figuring (IBF) of x-ray mirrors can now be achieved with unprecedented performance. However, the process of producing x-ray diffraction gratings on these surfaces may degrade the figure quality due to process errors introduced during the ruling of the grating grooves. To address this challenge, we have investigated the post-production correction of gratings using IBF, where stitching interferometry is used to provide in-process feedback. A concern with ion beam correction in this case is that ions will induce enough surface mobility of atoms to cause smoothing of the grating structure and degradation of diffraction efficiency. In this study we found however that it is possible to achieve a nanometer-level planarity of the global grating surface with IBF, while preserving the grating structure. The preservation was so good, that we could not detect a change in the diffraction efficiency after ion beam correction. This is of major importance in achieving ultra-high spectral resolution, and the preservation of brightness for coherent x-ray beams.

2.
Opt Express ; 30(16): 28783-28794, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299067

RESUMO

We have designed and fabricated a high groove density blazed grating for a Resonant Inelastic X-ray Scattering spectrometer for the new Qerlin beamline at the Advanced Light Source (ALS) synchrotron facility. The gratings were fabricated using a set of nanofabrication techniques including e-beam lithography, nanoimprint, plasma etch, and anisotropic wet etching. Two gratings with groove density of 6000 lines/mm and 3000 lines/mm and optimized for operation in the 1st and 2nd negative diffraction order respectively were fabricated and tested. We report on fabrication details and characterization of the gratings at beamline 6.3.2 of the ALS.

3.
Opt Express ; 29(11): 16676-16685, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154225

RESUMO

We have developed an advanced process for blaze angle reduction of x-ray gratings for the soft, tender, and EUV spectral ranges. The process is based on planarization of an anisotropically etched Si blazed grating followed by a chemically selective plasma etch. This provides a way to adjust the blaze angle to any lower value with high accuracy. Here we demonstrate the reduction of the blaze angle to an extremely low value of 0.04°±0.004°. For a 100 lines/mm grating with a Mo/Si multilayer coating, the grating exhibits diffraction efficiency of 58% in the 1st diffraction order at a wavelength of 13.3 nm. This technique will be applicable to a wide range of uses of high efficiency gratings for synchrotron sources, as well as for Free Electron Lasers (FEL).

4.
Rev Sci Instrum ; 87(11): 11E313, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910456

RESUMO

A dual-channel streaked soft x-ray imager has been designed and used on high energy-density physics experiments at the National Ignition Facility. This streaked imager creates two images of the same x-ray source using two slit apertures and a single shallow angle reflection from a nickel mirror. Thin filters are used to create narrow band pass images at 510 eV and 360 eV. When measuring a Planckian spectrum, the brightness ratio of the two images can be translated into a color-temperature, provided that the spectral sensitivity of the two images is well known. To reduce uncertainty and remove spectral features in the streak camera photocathode from this photon energy range, a thin 100 nm CsI on 50 nm Al streak camera photocathode was implemented. Provided that the spectral shape is well-known, then uncertainties on the spectral sensitivity limits the accuracy of the temperature measurement to approximately 4.5% at 100 eV.

5.
Opt Express ; 24(11): 11334-44, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410064

RESUMO

A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

6.
Rev Sci Instrum ; 87(5): 055110, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250473

RESUMO

A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF's x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 µm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were used to gate on photon energy ranges of approximately 300-510 eV and 200-400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.

7.
Faraday Discuss ; 180: 35-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25912462

RESUMO

We describe a new in operando approach for the investigation of heterogeneous processes at solid/liquid interfaces with elemental and chemical specificity which combines the preparation of thin liquid films using the meniscus method with standing wave ambient pressure X-ray photoelectron spectroscopy [Nemsák et al., Nat. Commun., 5, 5441 (2014)]. This technique provides information about the chemical composition across liquid/solid interfaces with sub-nanometer depth resolution and under realistic conditions of solution composition and concentration, pH, as well as electrical bias. In this article, we discuss the basics of the technique and present the first results of measurements on KOH/Ni interfaces.

8.
Opt Lett ; 39(11): 3157-60, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24876001

RESUMO

Imperfections in the multilayer stack deposited on a saw-tooth substrate are the main factor limiting the diffraction efficiency of extreme ultraviolet and soft x-ray multilayer-coated blazed gratings (MBGs). Since the multilayer perturbations occur in the vicinity of antiblazed facets of the substrates, reduction of the groove density of MBGs is expected to enlarge the area of unperturbed multilayer and result in higher diffraction efficiency. At the same time the grating should be optimized for higher-order operation in order to keep high dispersion and spectral resolution. In this work we show the validity of this approach and demonstrate significant enhancement of diffraction efficiency of MBGs using higher-order diffraction. A new record for diffraction efficiency of 52% in the second diffraction order was achieved for an optimized MBG with groove density of 2525 lines/mm at the wavelength of 13.4 nm.

9.
Opt Lett ; 37(10): 1628-30, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22627518

RESUMO

Diffraction efficiency of multilayer-coated blazed gratings (MBG) strongly depends on the perfection of the sawtooth-shaped layers in the overall composite structure. Growth of multilayers on sawtooth substrates should be carefully optimized to reduce groove profile distortion and, at the same time, to avoid significant roughening of multilayer interfaces. In this work, we report on a way to optimize growth of sputter-deposited Mo/Si multilayers on sawtooth substrates through variation of the sputtering gas pressure. We believe a new record for diffraction efficiency of 44% was achieved for an optimized MBG with groove density of 5250 lines/mm at the wavelength of 13.1 nm.

10.
Opt Express ; 19(7): 6320-5, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21451658

RESUMO

Ultra-high spectral resolution in the EUV and soft x-ray energy ranges requires the use of very high line density gratings with optimal design resulting in use of a Blazed Multilayer Grating (BMG) structure. Here we demonstrate the production of near-atomically perfect Si blazed substrates with an ultra-high groove density (10,000 l/mm) together with the measured and theoretical performance of an Al/Zr multilayer coating on the grating. A 1st order absolute efficiency of 13% and 24.6% was achieved at incidence angles of 11° and 36° respectively. Cross-sectional TEM shows the effect of smoothing caused by the surface mobility of deposited atoms and we correlate this effect with a reduction in peak diffraction efficiency. This work shows the high performance that can be achieved with BMGs based on small-period anisotropic etched Si substrates, but also the constraints imposed by the surface mobility of deposited species.


Assuntos
Refratometria/instrumentação , Espectrofotometria Ultravioleta/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
11.
Opt Express ; 17(24): 22102-7, 2009 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-19997456

RESUMO

Magnesium/silicon carbide (Mg/SiC) multilayers have been fabricated with normal incidence reflectivity in the vicinity of 40% to 50% for wavelengths in the 25 to 50 nm wavelength range. However many applications, for example solar telescopes and ultrafast studies using high harmonic generation sources, desire larger bandwidths than provided by high reflectivity Mg/SiC multilayers. We investigate introducing a third material, Scandium, to create a tri-material Mg/Sc/SiC multilayer allowing an increase the bandwidth while maintaining high reflectivity.

12.
J Nanosci Nanotechnol ; 6(1): 28-35, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16573066

RESUMO

For many thin-film applications substrate imperfections such as particles, pits, scratches, and general roughness, can nucleate film defects which can severely detract from the coating's performance. Previously we developed a coat-and-etch process, termed the ion beam thin film planarization process, to planarize substrate particles up to approximately 70 nm in diameter. The process relied on normal incidence etching; however, such a process induces defects nucleated by substrate pits to grow much larger. We have since developed a coat-and-etch process to planarize approximately 70 nm deep by 70 nm wide substrate pits; it relies on etching at an off-normal incidence angle, i.e., an angle of approximately 470 degrees from the substrate normal. However, a disadvantage of this pit smoothing process is that it induces defects nucleated by substrate particles to grow larger. Combining elements from both processes we have been able to develop a silicon-based, coat-and-etch process to successfully planarize approximately 70 nm substrate particles and pits simultaneously to at or below 1 nm in height; this value is important for applications such as extreme ultraviolet lithography (EUVL) masks. The coat-and-etch process has an added ability to significantly reduce high-spatial frequency roughness, rendering a nearly perfect substrate surface.


Assuntos
Dióxido de Silício , Eletroquímica , Microscopia de Força Atômica , Microscopia Eletrônica , Nanoestruturas , Nanotecnologia/métodos , Propriedades de Superfície , Raios Ultravioleta
13.
Opt Express ; 14(21): 10073-8, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19529401

RESUMO

Aperiodic multilayers have been designed for various applications, using numeric algorithms and analytical solutions, for many years with varying levels of success. This work developed a more realistic model for simulating aperiodic Mo/Si multilayers to be used in these algorithms by including the formation of MoSi(2). Using a genetic computer code we were able to optimize a 45 masculine multilayer for a large bandpass reflection multilayer that gave good agreement with the model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...