Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(7): 8689-8696, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32543831

RESUMO

Gold nanoparticles used in many types of nanostructure are mostly stabilized by citrate ligands. Fully understanding their dynamic surface chemistry is thus essential for applications, particularly since aging is frequently a problem. Using surface-enhanced Raman spectroscopy in conjunction with density functional theory calculations, we are able to determine Au-citrate coordination in liquid with minimal invasiveness. We show that citrate coordination is mostly bidentate and simply controlled by its protonation state. More complex binding motifs are caused by interfering chloride ions and gold adatoms. With increasing age of stored gold nanoparticle suspensions, gold adatoms are found to move atop the Au facets and bind to an additional terminal carboxylate of the citrate. Aged nanoparticles are fully refreshed by removing these adatoms, using etching and subsequent boiling of the gold nanoparticles.

2.
ACS Nano ; 14(4): 4982-4987, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32208688

RESUMO

The properties of nanoplasmonic structures depend strongly on their geometry, creating the need for high-precision control and characterization. Here, by exploiting the low activation energy of gold atoms on nanoparticle surfaces, we show how laser irradiation reshapes nanoparticle dimers. Time-course dark-field microspectroscopy allows this process to be studied in detail for individual nanostructures. Three regimes are identified: facet growth, formation of a conductive bridge between particles, and bridge growth. Electromagnetic simulations confirm the growth dynamics and allow measurement of bridge diameter, found to be highly reproducible and also self-limiting. Correlations in spectral resonances for the initial and final states give insight into the energy barriers for bridge growth. Dark-field microscopy shows that coalescence of multiple gaps in nanoparticle clusters can be digitally triggered, with each gap closing after discrete increases in irradiation power. Such control is important for light-induced nanowire formation or trimming of electronic and optoelectronic devices.

3.
Langmuir ; 32(42): 10987-10994, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27700114

RESUMO

There is an emerging trend toward the fabrication of microcapsules at liquid interfaces. In order to control the parameters of such capsules, the interfacial processes governing their formation must be understood. Here, poly(vinyl alcohol) films are assembled at the interface of water-in-oil microfluidic droplets. The polymer is cross-linked using cucurbit[8]uril ternary supramolecular complexes. It is shown that compression-induced phase change causes the onset of buckling in the interfacial film. On evaporative compression, the interfacial film both increases in density and thickens, until it reaches a critical density and a phase change occurs. We show that this increase in density can be simply related to the film Poisson ratio and area compression. This description captures fundamentals of many compressive interfacial phase changes and can also explain the observation of a fixed thickness-to-radius ratio at buckling, [Formula: see text].

4.
Proc Natl Acad Sci U S A ; 113(20): 5503-7, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140648

RESUMO

Nanoactuators and nanomachines have long been sought after, but key bottlenecks remain. Forces at submicrometer scales are weak and slow, control is hard to achieve, and power cannot be reliably supplied. Despite the increasing complexity of nanodevices such as DNA origami and molecular machines, rapid mechanical operations are not yet possible. Here, we bind temperature-responsive polymers to charged Au nanoparticles, storing elastic energy that can be rapidly released under light control for repeatable isotropic nanoactuation. Optically heating above a critical temperature [Formula: see text] = 32 °C using plasmonic absorption of an incident laser causes the coatings to expel water and collapse within a microsecond to the nanoscale, millions of times faster than the base polymer. This triggers a controllable number of nanoparticles to tightly bind in clusters. Surprisingly, by cooling below [Formula: see text] their strong van der Waals attraction is overcome as the polymer expands, exerting nanoscale forces of several nN. This large force depends on van der Waals attractions between Au cores being very large in the collapsed polymer state, setting up a tightly compressed polymer spring which can be triggered into the inflated state. Our insights lead toward rational design of diverse colloidal nanomachines.

5.
Small ; 12(13): 1788-96, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26865562

RESUMO

Microfluidic microdroplets have increasingly found application in biomolecular sensing as well as nanomaterials growth. More recently the synthesis of plasmonic nanostructures in microdroplets has led to surface-enhanced Raman spectroscopy (SERS)-based sensing applications. However, the study of nanoassembly in microdroplets has previously been hindered by the lack of on-chip characterization tools, particularly at early timescales. Enabled by a refractive index matching microdroplet formulation, dark-field spectroscopy is exploited to directly track the formation of nanometer-spaced gold nanoparticle assemblies in microdroplets. Measurements in flow provide millisecond time resolution through the assembly process, allowing identification of a regime where dimer formation dominates the dark-field scattering and SERS. Furthermore, it is shown that small numbers of nanoparticles can be isolated in microdroplets, paving the way for simple high-yield assembly, isolation, and sorting of few nanoparticle structures.


Assuntos
Nanopartículas Metálicas/química , Microfluídica/métodos , Fenômenos Ópticos , Análise Espectral Raman/métodos , Ouro/química , Refratometria
6.
Adv Funct Mater ; 25(26): 4091-4100, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26213532

RESUMO

Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules-where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core-shell microcapsules, gives access to a new generation of innovative self-assembled constructs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...