Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 234: 117921, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722670

RESUMO

In brain imaging, decoding is widely used to infer relationships between brain and cognition, or to craft brain-imaging biomarkers of pathologies. Yet, standard decoding procedures do not come with statistical guarantees, and thus do not give confidence bounds to interpret the pattern maps that they produce. Indeed, in whole-brain decoding settings, the number of explanatory variables is much greater than the number of samples, hence classical statistical inference methodology cannot be applied. Specifically, the standard practice that consists in thresholding decoding maps is not a correct inference procedure. We contribute a new statistical-testing framework for this type of inference. To overcome the statistical inefficiency of voxel-level control, we generalize the Family Wise Error Rate (FWER) to account for a spatial tolerance δ, introducing the δ-Family Wise Error Rate (δ-FWER). Then, we present a decoding procedure that can control the δ-FWER: the Ensemble of Clustered Desparsified Lasso (EnCluDL), a procedure for multivariate statistical inference on high-dimensional structured data. We evaluate the statistical properties of EnCluDL with a thorough empirical study, along with three alternative procedures including decoder map thresholding. We show that EnCluDL exhibits the best recovery properties while ensuring the expected statistical control.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Análise de Dados , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Desempenho Psicomotor/fisiologia
2.
Appl Opt ; 50(22): 4382-8, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21833114

RESUMO

We have undertaken a measurement campaign to determine the repeatability of the prompt flashlamp-induced wavefront aberration on beamlines at the National Ignition Facility (NIF) and determine the extent to which shot-to-shot variations in this aberration may degrade the performance of a proposed adaptive optics system for the short-pulse Advanced Radiographic Capability beamline on NIF. In this paper we will describe the unique NIF configuration that was required to make this measurement, present the results of the experiment, and discuss the implications of these results for the adaptive optics system design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...