Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1957): 20211195, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428964

RESUMO

The prevalence of disease-driven mass mortality events is increasing, but our understanding of spatial variation in their magnitude, timing and triggers are often poorly resolved. Here, we use a novel range-wide dataset comprised 48 810 surveys to quantify how sea star wasting disease affected Pycnopodia helianthoides, the sunflower sea star, across its range from Baja California, Mexico to the Aleutian Islands, USA. We found that the outbreak occurred more rapidly, killed a greater percentage of the population and left fewer survivors in the southern half of the species's range. Pycnopodia now appears to be functionally extinct (greater than 99.2% declines) from Baja California, Mexico to Cape Flattery, Washington, USA and exhibited severe declines (greater than 87.8%) from the Salish Sea to the Gulf of Alaska. The importance of temperature in predicting Pycnopodia distribution rose more than fourfold after the outbreak, suggesting latitudinal variation in outbreak severity may stem from an interaction between disease severity and warmer waters. We found no evidence of population recovery in the years since the outbreak. Natural recovery in the southern half of the range is unlikely over the short term. Thus, assisted recovery will probably be required to restore the functional role of this predator on ecologically relevant time scales.


Assuntos
Estrelas-do-Mar , Síndrome de Emaciação , Alaska , Animais , México/epidemiologia , Temperatura
2.
Sci Adv ; 5(1): eaau7042, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30729157

RESUMO

Multihost infectious disease outbreaks have endangered wildlife, causing extinction of frogs and endemic birds, and widespread declines of bats, corals, and abalone. Since 2013, a sea star wasting disease has affected >20 sea star species from Mexico to Alaska. The common, predatory sunflower star (Pycnopodia helianthoides), shown to be highly susceptible to sea star wasting disease, has been extirpated across most of its range. Diver surveys conducted in shallow nearshore waters (n = 10,956; 2006-2017) from California to Alaska and deep offshore (55 to 1280 m) trawl surveys from California to Washington (n = 8968; 2004-2016) reveal 80 to 100% declines across a ~3000-km range. Furthermore, timing of peak declines in nearshore waters coincided with anomalously warm sea surface temperatures. The rapid, widespread decline of this pivotal subtidal predator threatens its persistence and may have large ecosystem-level consequences.


Assuntos
Epidemias , Temperatura Alta/efeitos adversos , Raios Infravermelhos/efeitos adversos , Estrelas-do-Mar , Síndrome de Emaciação/epidemiologia , Síndrome de Emaciação/etiologia , Animais , Ecossistema , Pesqueiros , Oceanos e Mares/epidemiologia , Oceano Pacífico/epidemiologia , Comportamento Predatório , Síndrome de Emaciação/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...