Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(5): e4975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588275

RESUMO

The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/química , Conformação Molecular , Modelos Moleculares
3.
Sci Rep ; 9(1): 9841, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285509

RESUMO

A large number of natural products have been advocated as anticancer agents. Many of these compounds contain functional groups characterized by chemical reactivity. It is not clear whether distinct mechanisms of action can be attributed to such compounds. We used a chemical library screening approach to demonstrate that a substantial fraction (~20%) of cytotoxic synthetic compounds containing Michael acceptor groups inhibit proteasome substrate processing and induce a cellular response characteristic of proteasome inhibition. Biochemical and structural analyses showed binding to and inhibition of proteasome-associated cysteine deubiquitinases, in particular ubiquitin specific peptidase 14 (USP14). The results suggested that compounds bind to a crevice close to the USP14 active site with modest affinity, followed by covalent binding. A subset of compounds was identified where cell death induction was closely associated with proteasome inhibition and that showed significant antineoplastic activity in a zebrafish embryo model. These findings suggest that proteasome inhibition is a relatively common mode of action by cytotoxic compounds containing Michael acceptor groups and help to explain previous reports on the antineoplastic effects of natural products containing such functional groups.


Assuntos
Antineoplásicos/administração & dosagem , Inibidores de Proteassoma/administração & dosagem , Bibliotecas de Moléculas Pequenas/administração & dosagem , Ubiquitina Tiolesterase/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina Tiolesterase/química , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...