Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 31(4): 513-5, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16496904

RESUMO

We present all-optical tuning and switching of a microcavity inside a two-dimensional photonic crystal waveguide. The photonic crystal structure is fabricated in silicon-on-insulator using complementary metal-oxide semiconductor processing techniques based on deep ultraviolet lithography and is completely buried in a silicon dioxide cladding that provides protection from the environment. By focusing a laser onto the microcavity region, both a thermal and a plasma dispersion effect are generated, allowing tuning and fast modulation of the in-plane transmission. By means of the temporal characteristics of the in-plane transmission, we experimentally identify a slower thermal and a fast plasma dispersion effect with modulation bandwidths of the order of several 100 kHz and up to the gigahertz level, respectively.

2.
Opt Express ; 14(7): 2969-78, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19516436

RESUMO

We present theoretical and experimental results on switching and tuning of a two-dimensional photonic crystal resonant microcavity by means of a silicon AFM tip, probing the highly localized optical field in the vicinity of the cavity. On-off switching and modulation of the transmission signal in the kHz range is achieved by bringing an AFM tip onto the center of the microcavity, inducing a damping effect on the transmission resonance. Tuning of the resonant wavelength in the order of several nanometers becomes possible by inserting the AFM tip into one of the holes of the Bragg mirror forming the microcavity in the propagation direction.

3.
J Opt Soc Am A Opt Image Sci Vis ; 21(9): 1761-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15384443

RESUMO

We apply the boundary element method to the analysis of the plasmon response of systems that consist of coupled metallic nanoscatterers. For systems made of two or more objects, the response depends strongly on the individual particle behavior as well as on the separation distance and on the configuration of the particles relative to the illumination direction. By analyzing the behavior of these systems, we determine the smallest interaction distance at which the particles can be considered decoupled. We discriminate the two cases of particle systems consisting of scatterers with the same and different resonance wavelengths.

4.
J Opt Soc Am A Opt Image Sci Vis ; 20(10): 1969-73, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14570111

RESUMO

The boundary-element method is applied to the interaction of light with resonant metallic nanoparticles. At a certain wavelength, excitation of a surface plasmon takes place, which leads to a resonantly enhanced near-field amplitude and a large scattering cross section. The resonance wavelength for different scatterer geometries is determined. Alteration of the scattering properties in the presence of other metallic nanoparticles is discussed. To treat this problem, a novel formulation of the boundary-element method is presented that solves the interaction problem for all the coupled particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...