Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(9): 091103, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524437

RESUMO

We propose helioseismology as a new, precision probe of fifth forces at astrophysical scales, and apply it on the most general scalar-tensor theories for dark energy, known as degenerate higher-order scalar-tensor theories. We explain how the effect of the fifth force on the solar interior leaves an observable imprint on the acoustic oscillations, and under certain assumptions we numerically compute the nonradial pulsation eigenfrequencies within modified gravity. We illustrate its constraining power by showing that helioseismic observations have the potential to improve constraints on the strength of the fifth force by more than 2 orders of magnitude, as -1.8×10^{-3}≤Y≤1.2×10^{-3} (at 2σ). This in turn would suggest constraints of similar order for the theory's free functions around a cosmological background (α_{H}, ß_{1}).

2.
Phys Rev Lett ; 120(13): 131101, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694183

RESUMO

The coincident detection of gravitational waves (GW) and a gamma-ray burst from a merger of neutron stars has placed an extremely stringent bound on the speed of GWs. We showed previously that the presence of gravitational slip (η) in cosmology is intimately tied to modifications of GW propagation. This new constraint implies that the only remaining viable source of gravitational slip is a conformal coupling to gravity in scalar-tensor theories, while viable vector-tensor theories cannot now generate gravitational slip at all. We discuss structure formation in the remaining viable models, demonstrating that (i) the dark-matter growth rate must now be at least as fast as in general relativity (GR), with the possible exception of that beyond the Horndeski model, and (ii) if there is any scale dependence at all in the slip parameter, it is such that it takes the GR value at large scales. We show a consistency relation that must be violated if gravity is modified.

3.
Phys Rev Lett ; 113(19): 191101, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415893

RESUMO

We make precise the heretofore ambiguous statement that anisotropic stress is a sign of a modification of gravity. We show that in cosmological solutions of very general classes of models extending gravity-all scalar-tensor theories (Horndeski), Einstein-aether models, and bimetric massive gravity-a direct correspondence exists between perfect fluids apparently carrying anisotropic stress and a modification in the propagation of gravitational waves. Since the anisotropic stress can be measured in a model-independent manner, a comparison of the behavior of gravitational waves from cosmological sources with large-scale-structure formation could, in principle, lead to new constraints on the theory of gravity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...