Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomater Adv ; 163: 213935, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38970881

RESUMO

In the present era of "Diabetic Pandemic", peptide-based therapies have generated immense interest however, are facing odds due to inevitable limitations like stability, delivery complications and off-target effects. One such promising molecule is C-peptide (CPep, 31 amino acid polypeptide with t1/2 30 min); it is a cleaved subunit of pro-insulin, well known to suppress microvascular complications in kidney but has not been able to undergo translation to the clinic till date. Herein, a polymeric CPep nano-complexes (NPX) was prepared by leveraging electrostatic interaction between in-house synthesized cationic, polyethylene carbonate (PEC) based copolymer (Mol. wt. 44,767 Da) and negatively charged CPep (Mol. wt. 3299 Da) at pH 7.4 and further evaluated in vitro and in vivo. NPX exhibited a spherical morphology with a particle size of 167 nm and zeta potential equivalent to +10.3, with 85.70 % of CPep complexation efficiency. The cellular uptake of FITC-tagged CPep NPX was 95.61 % in normal rat kidney cells, NRK-52E. Additionally, the hemocompatible NPX showed prominent cell-proliferative, anti-oxidative (1.8 folds increased GSH; 2.8 folds reduced nitrite concentration) and anti-inflammatory activity in metabolic stress induced NRK-52E cells as well. The observation was further confirmed by upregulation of anti-apoptotic protein BCl2 by 3.5 folds, and proliferative markers (ß1-integrin and EGFR) by 3.5 and 2.3 folds, respectively, compared to the high glucose treated control group. Pharmacokinetic study of NPX in Wistar rats revealed a 6.34 folds greater half-life than free CPep. In in-vivo efficacy study in STZ-induced diabetic nephropathy animal model, NPX reduced blood glucose levels and IL-6 levels significantly by 1.3 and 2.5 folds, respectively, as compared to the disease control group. The above findings suggested that NPX has tremendous potential to impart sustained release of CPep, resulting in enhanced efficacy to treat diabetes-induced nephropathy and significantly improved renal pathology.

2.
Eur J Pharm Biopharm ; 195: 114175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185191

RESUMO

Exosomes, biogenic nano-vesicles, are renowned for their ability to encapsulate diverse payloads, however the systematic development and validation of exosomal formulation with significant biological implications have been overlooked. Herein, we developed and validated Exo-DTX, a QbD-driven optimized RAW 264.7 cell derived exosomal anti-cancer formulation of docetaxel (DTX) and evaluate its anti-metastatic and apoptotic efficacy in TNBC 4T1 cells. RAW264.7-derived exosomes were having particle size (112.5 ± 21.48 nm) and zeta-potential (-10.268 ± 3.66 mV) with polydispersity (PDI:0.256 ± 0.03). The statistical optimization of exosomes (200 µg) with Exo: DTX ratio 4:1 confirmed encapsulation of 23.60 ± 1.54 ng DTX/ µg exosomes. Exo-DTX (∼189 nm, -11.03 mV) with 100 ng/ml DTX as payload exhibited ∼5 folds' improvement in IC50 of DTX and distinct cytoskeletal deformation in TNBC 4T1 cells. It also has shown enormous Filamentous actin (F-actin) degradation and triggered apoptosis explained Exo-DTX's effective anti-migratory impact with just 2.6 ± 6.33 % wound closure and 4.56 ± 1.38 % invasion. The western blot confirmed that Exo-DTX downregulated migratory protein EGFR and ß1-integrin but raised cleaved caspase 3/caspase 3 (CC3/C3) ratio and BAX/BCL-2 ratio by about 2.70 and 4.04 folds respectively. The naive RAW 264.7 exosomes also contributed positively towards the effect of Exo-DTX formulation by suppressing ß1-integrin expression and increasing the CC3/C3 ratio in TNBC 4T1 cells as well. Additionally, significant improvement in PK parameters of Exo-DTX was observed in comparison to Taxotere, 6-folds and 3.04-folds improved t1/2 and Vd, proving the translational value of Exo-DTX formulation. Thus, the Exo-DTX so formulated proved beneficial in controlling the aggressiveness of TNBC wherein, naive exosomes also demonstrated beneficial synergistic anti-proliferative effect in 4T1.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Docetaxel/farmacocinética , Caspase 3 , Macrófagos , Integrinas , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral
3.
J Mater Chem B ; 11(45): 10859-10872, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37938124

RESUMO

Despite various treatment modalities for breast cancer, it still persists as one of the most diagnosed types of cancer in females. The recent investigations in the epigenetics of breast cancer reveal several aberrations in the expression levels of various HDAC enzymes. Henceforth, the present work entails the formulation and characterization of a lipid polymer-based hybrid nanoparticulate (LPN) system for delivery of an epigenetic modulator drug, Belinostat, for its clinical application in breast cancer. The size of Belinostat nanoparticles prepared using a modified hot homogenization method was found to be 166.6 ± 19.95 nm with an encapsulation efficiency of 94.5 ± 5.1%. In vitro characterization for cytotoxicity, cellular uptake, and protein expression in two different breast cancer cells, 4T1 and MCF 7, revealed the superiority of the formulation in comparison with the free drug in MCF 7 cells. Subsequently, the behaviour of the formulation in in vivo settings of healthy and breast cancer xenograft bearing animals was analyzed using pharmacokinetic and biodistribution studies. The results revealed that the formulation demonstrated multi-fold improvement in the pharmacokinetic parameters in tumor bearing animals when compared with the free drug while no difference in pharmacokinetic behaviour was observed in healthy animals indicating the altered biodistribution and specificity of the formulation in breast tumor. This was confirmed by the biodistribution studies exhibiting 20-fold improved uptake and retention of the nanoparticulate formulation in tumor tissues of the animal model at the end of 4 h. Thus, the developed LPN system holds potential to act as a novel drug delivery system for Belinostat with several advantages over the free drug.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Polímeros/metabolismo , Distribuição Tecidual , Linhagem Celular Tumoral , Lipídeos
4.
Int J Pharm ; 631: 122508, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36539166

RESUMO

Asiaticoside (AST) is a naturally available phytoconstituent that enables effective wound healing mainly by promoting collagen biosynthesis. However, the physicochemical nature of AST such as high molecular weight (959.12 g/mol), poor water solubility and poor permeability limits its therapeutic effects. This study aims to develop Asiaticoside polymeric nanoparticles (AST PNP) embedded in a gelatin based biodegradable hydrogel (15 % w/v) for application in the wound cavity to enable sustained release of AST and enhance its therapeutic effects. The AST PNP were fabricated in the desired size range (168.4 nm; PDI (0.09)) and the morphology, rate of fluid uptake, rate of water loss, and water vapor transmission rate of AST PNP incorporated hydrogel were determined. AST PNP gel showed porous structural morphology and possessed ideal characteristics as a graft for wound healing. The drug release kinetics and cellular uptake of AST PNP were investigated wherein, AST PNP demonstrated sustained release profile upto 24 h in comparison to free AST (complete release within 6 h) and exhibited an enhanced intra-cellular uptake in fibroblasts within 3 h compared to the free drug. In-vitrocell culture studies also demonstrated significant proliferation and migration of fibroblasts in the presence of AST PNP. Additionally, AST PNP gel upon application to the wounds of diabetic rats depicted improved wound healing efficacy in terms of improved collagen biosynthesis, upregulated COL-1 protein level (∼1.85 fold vs free AST), and enhanced expression of α-SMA compared to control groups. Altogether, formulation of AST as polymeric nanoparticles in a gel based carrier offered significant improvement in the therapeutic properties of AST for the management of diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas , Ratos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Preparações de Ação Retardada/farmacologia , Cicatrização , Colágeno/química , Nanopartículas/química , Hidrogéis/química
5.
Adv Drug Deliv Rev ; 173: 394-415, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831474

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a cluster of several liver diseases like hepatic steatosis, non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver (NAFL), liver fibrosis, and cirrhosis which may eventually progress to liver carcinoma. One of the primary key factors associated with the development and pathogenesis of NAFLD is diabetes mellitus. The present review emphasizes on diabetes-associated development of liver fibrosis and its treatment using different lipid nanoparticles such as stable nucleic acid lipid nanoparticles, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, self-nanoemulsifying drug delivery systems, and conjugates including phospholipid, fatty acid and steroid-based. We have comprehensively described the various pathological and molecular events linking effects of elevated free fatty acid levels, insulin resistance, and diabetes with the pathogenesis of liver fibrosis. Various passive and active targeting strategies explored for targeting hepatic stellate cells, a key target in liver fibrosis, have also been discussed in detail in this review.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Hipoglicemiantes/uso terapêutico , Lipídeos/química , Cirrose Hepática/tratamento farmacológico , Nanopartículas/química , Animais , Diabetes Mellitus/patologia , Portadores de Fármacos/química , Humanos , Hipoglicemiantes/química , Cirrose Hepática/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...