Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(10): 4406-4411, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38379516

RESUMO

MIL-53 represents one of the most notable metal-organic frameworks given its unique structural flexibility and remarkable thermal stability. In this study, a shaker-type ball milling method has been developed into a facile and generalizable synthetic strategy to access a family of MIL-53 type materials under ambient conditions. During the explorations of [M(OH)(fumarate)] (M = Al, Ga, and In), we report a positive correlation between the metal-ligand (M-L) bond reversibility and the size of resultant crystallites under the mechanochemical process. The more kinetically labile the M-L bond is, the larger the afforded crystallite size is.

2.
Inorg Chem ; 62(8): 3333-3337, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36790323

RESUMO

Mechanochemistry, a resurging synthetic approach, has been developed into an effective and controllable method to access a family of crystalline porous catechol-derived metal-organic frameworks (MOFs) for the first time. We have identified that the obtained crystalline phase is readily tunable by precursors and the addition of solvents or drying agents. The described mechanochemistry allows us to synthesize these materials in a highly sustainable manner. Thus, mechanochemistry is expected to pave a promising avenue to access a broader class of MOF materials, in addition to those based on the motifs of carboxylic acid or imidazole.

3.
Inorg Chem ; 60(21): 16079-16084, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647742

RESUMO

Mechanochemical synthesis is emerging as an environmentally friendly yet efficient approach to preparing metal-organic frameworks (MOFs). Herein, we report our systematic investigation on the mechanochemical syntheses of Group 4 element-based MOFs. The developed mechanochemistry allows us to synthesize a family of Hf4O4(OH)4(OOC)12-based MOFs. Integrating [Zr6O4(OH)4(OAc)12]2 and [Hf6O4(OH)4(OAc)12]2 under the mechanochemical conditions leads to a unique family of cluster-precise multimetallic MOFs that cannot be accessed by the conventional solvothermal synthesis. Extensive efforts have not yielded an effective pathway for preparing TiIV-derived MOFs, tentatively because of the relatively low Ti-O bond dissociation energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...