Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(42): 28781-28787, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048084

RESUMO

Manganese oxides (MnxOy) are considered as a promising catalyst alternative to platinum in fuel cell applications. In fact, a proper catalyst is needed in order to facilitate the oxygen reduction reaction (ORR) at the cathode, and platinum is considered the best material due to its low overpotential for this reaction. Contrary to platinum, MnxOy is inexpensive, environmentally friendly and can be shaped into several nanostructures; furthermore, most of them show significant electro-catalytic performance. Several strategies have been carried out in order to increase their efficiency, by preparing light and high-surface area materials. In this framework, nanofibres are among the most promising nanostructures that can be used for this purpose. In this work, a study of the thermal, morphological and catalytic behavior of MnxOy nanofibres obtained through the electrospinning technique is proposed. Emphasis is given to the thermal evolution of the precursors, proposing a possible crystallization mechanism of the different manganese oxides obtained. It turns out that manganese oxide nanofibres exhibit good catalytic performance for the ORR, comparable to those obtained by using Pt-based catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...