Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1782, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245558

RESUMO

The heart coordinates its functional parameters for optimal beat-to-beat mechanical activity. Reliable detection and quantification of these parameters still represent a hot topic in cardiovascular research. Nowadays, computer vision allows the development of open-source algorithms to measure cellular kinematics. However, the analysis software can vary based on analyzed specimens. In this study, we compared different software performances in in-silico model, in-vitro mouse adult ventricular cardiomyocytes and cardioids. We acquired in-vitro high-resolution videos during suprathreshold stimulation at 0.5-1-2 Hz, adapting the protocol for the cardioids. Moreover, we exposed the samples to inotropic and depolarizing substances. We analyzed in-silico and in-vitro videos by (i) MUSCLEMOTION, the gold standard among open-source software; (ii) CONTRACTIONWAVE, a recently developed tracking software; and (iii) ViKiE, an in-house customized video kinematic evaluation software. We enriched the study with three machine-learning algorithms to test the robustness of the motion-tracking approaches. Our results revealed that all software produced comparable estimations of cardiac mechanical parameters. For instance, in cardioids, beat duration measurements at 0.5 Hz were 1053.58 ms (MUSCLEMOTION), 1043.59 ms (CONTRACTIONWAVE), and 937.11 ms (ViKiE). ViKiE exhibited higher sensitivity in exposed samples due to its localized kinematic analysis, while MUSCLEMOTION and CONTRACTIONWAVE offered temporal correlation, combining global assessment with time-efficient analysis. Finally, machine learning reveals greater accuracy when trained with MUSCLEMOTION dataset in comparison with the other software (accuracy > 83%). In conclusion, our findings provide valuable insights for the accurate selection and integration of software tools into the kinematic analysis pipeline, tailored to the experimental protocol.


Assuntos
Algoritmos , Software , Camundongos , Animais , Fenômenos Biomecânicos , Miócitos Cardíacos/fisiologia , Aprendizado de Máquina
2.
Circulation ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126199

RESUMO

BACKGROUND: Metabolic distress is often associated with heart failure with preserved ejection fraction (HFpEF) and represents a therapeutic challenge. Metabolism-induced systemic inflammation links comorbidities with HFpEF. How metabolic changes affect myocardial inflammation in the context of HFpEF is not known. METHODS: We found that ApoE knockout mice fed a Western diet recapitulate many features of HFpEF. Single-cell RNA sequencing was used for expression analysis of CD45+ cardiac cells to evaluate the involvement of inflammation in diastolic dysfunction. We focused bioinformatics analysis on macrophages, obtaining high-resolution identification of subsets of these cells in the heart, enabling us to study the outcomes of metabolic distress on the cardiac macrophage infiltrate and to identify a macrophage-to-cardiomyocyte regulatory axis. To test whether a clinically relevant sodium glucose cotransporter-2 inhibitor could ameliorate the cardiac immune infiltrate profile in our model, mice were randomized to receive the sodium glucose cotransporter-2 inhibitor dapagliflozin or vehicle for 8 weeks. RESULTS: ApoE knockout mice fed a Western diet presented with reduced diastolic function, reduced exercise tolerance, and increased pulmonary congestion associated with cardiac lipid overload and reduced polyunsaturated fatty acids. The main immune cell types infiltrating the heart included 4 subpopulations of resident and monocyte-derived macrophages, determining a proinflammatory profile exclusively in ApoE knockout- Western diet mice. Lipid overload had a direct effect on inflammatory gene activation in macrophages, mediated through endoplasmic reticulum stress pathways. Investigation of the macrophage-to-cardiomyocyte regulatory axis revealed the potential effects on cardiomyocytes of multiple inflammatory cytokines secreted by macrophages, affecting pathways such as hypertrophy, fibrosis, and autophagy. Finally, we describe an anti-inflammatory effect of sodium glucose cotransporter-2 inhibitor in this model. CONCLUSIONS: Using single-cell RNA sequencing , in a model of diastolic dysfunction driven by hyperlipidemia, we have determined the effects of metabolic distress on cardiac inflammatory cells, in particular on macrophages, and suggest sodium glucose cotransporter-2 inhibitors as potential therapeutic agents for the targeting of a specific phenotype of HFpEF.

3.
Circ Res ; 133(8): 687-703, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681309

RESUMO

BACKGROUND: Heart failure is typical in the elderly. Metabolic remodeling of cardiomyocytes underlies inexorable deterioration of cardiac function with aging: glycolysis increases at the expense of oxidative phosphorylation, causing an energy deficit contributing to impaired contractility. Better understanding of the mechanisms of this metabolic switching could be critical for reversing the condition. METHODS: To investigate the role of 3 histone modifications (H3K27ac, H3K27me3, and H3K4me1) in the metabolic remodeling occurring in the aging heart, we cross-compared epigenomic, transcriptomic, and metabolomic data from mice of different ages. In addition, the role of the transcriptional coactivator p300 (E1A-associated binding protein p300)/CBP (CREB binding protein) in cardiac aging was investigated using a specific inhibitor of this histone acetyltransferase enzyme. RESULTS: We report a set of species-conserved enhancers associated with transcriptional changes underlying age-related metabolic remodeling in cardiomyocytes. Activation of the enhancer region of Hk2-a key glycolysis pathway gene-was fostered in old age-onset mouse heart by pseudohypoxia, wherein hypoxia-related genes are expressed under normal O2 levels, via increased activity of P300/CBP. Pharmacological inhibition of this transcriptional coactivator before the onset of cardiac aging led to a more aerobic, less glycolytic, metabolic state, improved heart contractility, and overall blunting of cardiac decline. CONCLUSIONS: Taken together, our results suggest how epigenetic dysregulation of glycolysis pathway enhancers could potentially be targeted to treat heart failure in the elderly.


Assuntos
Insuficiência Cardíaca , Fatores de Transcrição , Humanos , Camundongos , Animais , Idoso , Histona Acetiltransferases , Sequências Reguladoras de Ácido Nucleico , Transcriptoma , Ativação Transcricional
4.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298497

RESUMO

Brugada syndrome (BrS) is an inherited autosomal dominant cardiac channelopathy. Pathogenic rare mutations in the SCN5A gene, encoding the alpha-subunit of the voltage-dependent cardiac Na+ channel protein (Nav1.5), are identified in 20% of BrS patients, affecting the correct function of the channel. To date, even though hundreds of SCN5A variants have been associated with BrS, the underlying pathogenic mechanisms are still unclear in most cases. Therefore, the functional characterization of the SCN5A BrS rare variants still represents a major hurdle and is fundamental to confirming their pathogenic effect. Human cardiomyocytes (CMs) differentiated from pluripotent stem cells (PSCs) have been extensively demonstrated to be reliable platforms for investigating cardiac diseases, being able to recapitulate specific traits of disease, including arrhythmic events and conduction abnormalities. Based on this, in this study, we performed a functional analysis of the BrS familial rare variant NM_198056.2:c.3673G>A (NP_932173.1:p.Glu1225Lys), which has been never functionally characterized before in a cardiac-relevant context, as the human cardiomyocyte. Using a specific lentiviral vector encoding a GFP-tagged SCN5A gene carrying the specific c.3673G>A variant and CMs differentiated from control PSCs (PSC-CMs), we demonstrated an impairment of the mutated Nav1.5, thus suggesting the pathogenicity of the rare BrS detected variant. More broadly, our work supports the application of PSC-CMs for the assessment of the pathogenicity of gene variants, the identification of which is increasing exponentially due to the advances in next-generation sequencing methods and their massive use in genetic testing.


Assuntos
Síndrome de Brugada , Células-Tronco Pluripotentes , Humanos , Síndrome de Brugada/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Mutação , Células-Tronco Pluripotentes/metabolismo
5.
Nat Commun ; 13(1): 6, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013167

RESUMO

Myocardial infarction causes 7.3 million deaths worldwide, mostly for fibrillation that electrically originates from the damaged areas of the left ventricle. Conventional cardiac bypass graft and percutaneous coronary interventions allow reperfusion of the downstream tissue but do not counteract the bioelectrical alteration originated from the infarct area. Genetic, cellular, and tissue engineering therapies are promising avenues but require days/months for permitting proper functional tissue regeneration. Here we engineered biocompatible silicon carbide semiconductive nanowires that synthetically couple, via membrane nanobridge formations, isolated beating cardiomyocytes over distance, restoring physiological cell-cell conductance, thereby permitting the synchronization of bioelectrical activity in otherwise uncoupled cells. Local in-situ multiple injections of nanowires in the left ventricular infarcted regions allow rapid reinstatement of impulse propagation across damaged areas and recover electrogram parameters and conduction velocity. Here we propose this nanomedical intervention as a strategy for reducing ventricular arrhythmia after acute myocardial infarction.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos/fisiologia , Nanofios , Arritmias Cardíacas/terapia , Compostos Inorgânicos de Carbono , Ventrículos do Coração , Humanos , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Compostos de Silício
6.
Circ Res ; 126(12): e120-e135, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32216529

RESUMO

RATIONALE: MicroRNAs (miRNAs, miRs) are small noncoding RNAs that modulate gene expression by negatively regulating translation of target genes. Although the role of several miRNAs in vascular smooth muscle cells (VSMCs) has been extensively characterized, the function of miRNA-128-3p (miR-128) is still unknown. OBJECTIVE: To determine if miR-128 modulates VSMC phenotype and to define the underlying mechanisms. METHODS AND RESULTS: We screened for miRNAs whose expression is modulated by an altered DNA methylation status in VSMCs, and among the hits, we selected miR-128. We found that miR-128 was expressed in various tissues, primary murine cells, and pathological murine and human vascular specimens. Through gain- and loss-of-function approaches, we determined that miR-128 affects VSMC proliferation, migration, differentiation, and contractility. The alterations of those properties were dependent upon epigenetic regulation of key VSMC differentiation genes; notably, Kruppel-like factor 4 was found to be a direct target of miR-128 and able to modulate the methylation status of the pivotal VSMC gene myosin heavy chain 11 (Myh11). Finally, in vivo lentiviral delivery of miR-128 prevented intimal hyperplasia in a mouse model of carotid restenosis without modifying vital cardiovascular parameters. CONCLUSION: miR-128 is a critical modulator of VSMCs and is regulated by epigenetic modifications upon stress. Its modulation in the context of disease could be exploited for therapeutic purposes.


Assuntos
Estenose das Carótidas/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Estenose das Carótidas/genética , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Metilação de DNA , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , MicroRNAs/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo
7.
Front Physiol ; 11: 616819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488405

RESUMO

Brugada syndrome (BrS) is an inherited arrhythmogenic disease that may lead to sudden cardiac death in young adults with structurally normal hearts. No pharmacological therapy is available for BrS patients. This situation highlights the urgent need to overcome current difficulties by developing novel groundbreaking curative strategies. BrS has been associated with mutations in 18 different genes of which loss-of-function (LoF) CACNA1C mutations constitute the second most common cause. Here we tested the hypothesis that BrS associated with mutations in the CACNA1C gene encoding the L-type calcium channel (LTCC) pore-forming unit (Cavα1.2) is functionally reverted by administration of a mimetic peptide (MP), which through binding to the LTCC chaperone beta subunit (Cavß2) restores the physiological life cycle of aberrant LTCCs. Two novel Cavα1.2 mutations associated with BrS were identified in young individuals. Transient transfection in heterologous and cardiac cells showed LoF phenotypes with reduced Ca2+ current (ICa). In HEK293 cells overexpressing the two novel Cavα1.2 mutations, Western blot analysis and cell surface biotinylation assays revealed reduced Cavα1.2 protein levels at the plasma membrane for both mutants. Nano-BRET, Nano-Luciferase assays, and confocal microscopy analyses showed (i) reduced affinity of Cavα1.2 for its Cavß2 chaperone, (ii) shortened Cavα1.2 half-life in the membrane, and (iii) impaired subcellular localization. Treatment of Cavα1.2 mutant-transfected cells with a cell permeant MP restored channel trafficking and physiologic channel half-life, thereby resulting in ICa similar to wild type. These results represent the first step towards the development of a gene-specific treatment for BrS due to defective trafficking of mutant LTCC.

8.
Nat Commun ; 10(1): 2267, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118417

RESUMO

Mutations in LMNA, which encodes the nuclear proteins Lamin A/C, can cause cardiomyopathy and conduction disorders. Here, we employ induced pluripotent stem cells (iPSCs) generated from human cells carrying heterozygous K219T mutation on LMNA to develop a disease model. Cardiomyocytes differentiated from these iPSCs, and which thus carry K219T-LMNA, have altered action potential, reduced peak sodium current and diminished conduction velocity. Moreover, they have significantly downregulated Nav1.5 channel expression and increased binding of Lamin A/C to the promoter of SCN5A, the channel's gene. Coherently, binding of the Polycomb Repressive Complex 2 (PRC2) protein SUZ12 and deposition of the repressive histone mark H3K27me3 are increased at SCN5A. CRISPR/Cas9-mediated correction of the mutation re-establishes sodium current density and SCN5A expression. Thus, K219T-LMNA cooperates with PRC2 in downregulating SCN5A, leading to decreased sodium current density and slower conduction velocity. This mechanism may underlie the conduction abnormalities associated with LMNA-cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/genética , Sistema de Condução Cardíaco/patologia , Lamina Tipo A/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Adolescente , Adulto , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/cirurgia , Linhagem Celular , Regulação para Baixo , Epigênese Genética , Feminino , Transplante de Coração , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Mutação , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Proteínas de Neoplasias , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição
9.
Sci Transl Med ; 10(424)2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343624

RESUMO

Peptides are highly selective and efficacious for the treatment of cardiovascular and other diseases. However, it is currently not possible to administer peptides for cardiac-targeting therapy via a noninvasive procedure, thus representing scientific and technological challenges. We demonstrate that inhalation of small (<50 nm in diameter) biocompatible and biodegradable calcium phosphate nanoparticles (CaPs) allows for rapid translocation of CaPs from the pulmonary tree to the bloodstream and to the myocardium, where their cargo is quickly released. Treatment of a rodent model of diabetic cardiomyopathy by inhalation of CaPs loaded with a therapeutic mimetic peptide that we previously demonstrated to improve myocardial contraction resulted in restoration of cardiac function. Translation to a porcine large animal model provides evidence that inhalation of a peptide-loaded CaP formulation is an effective method of targeted administration to the heart. Together, these results demonstrate that inhalation of biocompatible tailored peptide nanocarriers represents a pioneering approach for the pharmacological treatment of heart failure.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Nanopartículas/química , Peptídeos/administração & dosagem , Peptídeos/uso terapêutico , Administração por Inalação , Animais , Fosfatos de Cálcio/química , Portadores de Fármacos/química , Ecocardiografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Suínos
10.
Circulation ; 136(13): 1233-1246, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28778944

RESUMO

BACKGROUND: Correct gene expression programming of the cardiomyocyte underlies the normal functioning of the heart. Alterations to this can lead to the loss of cardiac homeostasis, triggering heart dysfunction. Although the role of some histone methyltransferases in establishing the transcriptional program of postnatal cardiomyocytes during heart development has been shown, the function of this class of epigenetic enzymes is largely unexplored in the adult heart. In this study, we investigated the role of G9a/Ehmt2, a histone methyltransferase that defines a repressive epigenetic signature, in defining the transcriptional program for cardiomyocyte homeostasis and cardiac hypertrophy. METHODS: We investigated the function of G9a in normal and stressed cardiomyocytes with the use of a conditional, cardiac-specific G9a knockout mouse, a specific G9a inhibitor, and high-throughput approaches for the study of the epigenome (chromatin immunoprecipitation sequencing) and transcriptome (RNA sequencing); traditional methods were used to assess cardiac function and cardiovascular disease. RESULTS: We found that G9a is required for cardiomyocyte homeostasis in the adult heart by mediating the repression of key genes regulating cardiomyocyte function via dimethylation of H3 lysine 9 and interaction with enhancer of zeste homolog 2, the catalytic subunit of polycomb repressive complex 2, and MEF2C-dependent gene expression by forming a complex with this transcription factor. The G9a-MEF2C complex was found to be required also for the maintenance of heterochromatin needed for the silencing of developmental genes in the adult heart. Moreover, G9a promoted cardiac hypertrophy by repressing antihypertrophic genes. CONCLUSIONS: Taken together, our findings demonstrate that G9a orchestrates critical epigenetic changes in cardiomyocytes in physiological and pathological conditions, thereby providing novel therapeutic avenues for cardiac pathologies associated with dysregulation of these mechanisms.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Coração/fisiologia , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas do Grupo Polycomb/química , Proteínas do Grupo Polycomb/metabolismo , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Volume Sistólico , Transcrição Gênica , Regulação para Cima/efeitos dos fármacos
11.
Circ Arrhythm Electrophysiol ; 10(5): e004567, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28500173

RESUMO

BACKGROUND: TGF-ß1 (transforming growth factor-ß1) importantly contributes to cardiac fibrosis by controlling differentiation, migration, and collagen secretion of cardiac myofibroblasts. It is still elusive, however, to which extent TGF-ß1 alters the electrophysiological phenotype of myofibroblasts and cardiomyocytes and whether it affects proarrhythmic myofibroblast-cardiomyocyte crosstalk observed in vitro. METHODS AND RESULTS: Patch-clamp recordings of cultured neonatal rat ventricular myofibroblasts revealed that TGF-ß1, applied for 24 to 48 hours at clinically relevant concentrations (≤2.5 ng/mL), causes substantial membrane depolarization concomitant with a several-fold increase of transmembrane currents. Transcriptome analysis revealed TGF-ß1-dependent changes in 29 of 63 ion channel/pump/connexin transcripts, indicating a pleiotropic effect on the electrical phenotype of myofibroblasts. Whereas not affecting cardiomyocyte membrane potentials and cardiomyocyte-cardiomyocyte gap junctional coupling, TGF-ß1 depolarized cardiomyocytes coupled to myofibroblasts by ≈20 mV and increased gap junctional coupling between myofibroblasts and cardiomyocytes >5-fold as reflected by elevated connexin 43 and consortin transcripts. TGF-ß1-dependent cardiomyocyte depolarization resulted from electrotonic crosstalk with myofibroblasts as demonstrated by immediate normalization of cardiomyocyte electrophysiology after targeted disruption of coupled myofibroblasts and by cessation of ectopic activity of cardiomyocytes coupled to myofibroblasts during pharmacological gap junctional uncoupling. In cardiac fibrosis models exhibiting slow conduction and ectopic activity, block of TGF-ß1 signaling completely abolished both arrhythmogenic conditions. CONCLUSIONS: TGF-ß1 profoundly alters the electrophysiological phenotype of cardiac myofibroblasts. Apart from possibly contributing to the control of cell function in general, the changes proved to be pivotal for proarrhythmic myofibroblast-cardiomyocyte crosstalk in vitro, which suggests that TGF-ß1 may play a potentially important role in arrhythmogenesis of the fibrotic heart.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Cardiomiopatias/induzido quimicamente , Comunicação Celular/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/toxicidade , Potenciais de Ação , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Células Cultivadas , Conexinas/genética , Conexinas/metabolismo , Relação Dose-Resposta a Droga , Fibrose , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Fenótipo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transcriptoma
12.
Circulation ; 134(7): 534-46, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27486162

RESUMO

BACKGROUND: L-type calcium channels (LTCCs) play important roles in regulating cardiomyocyte physiology, which is governed by appropriate LTCC trafficking to and density at the cell surface. Factors influencing the expression, half-life, subcellular trafficking, and gating of LTCCs are therefore critically involved in conditions of cardiac physiology and disease. METHODS: Yeast 2-hybrid screenings, biochemical and molecular evaluations, protein interaction assays, fluorescence microscopy, structural molecular modeling, and functional studies were used to investigate the molecular mechanisms through which the LTCC Cavß2 chaperone regulates channel density at the plasma membrane. RESULTS: On the basis of our previous results, we found a direct linear correlation between the total amount of the LTCC pore-forming Cavα1.2 and the Akt-dependent phosphorylation status of Cavß2 both in a mouse model of diabetic cardiac disease and in 6 diabetic and 7 nondiabetic cardiomyopathy patients with aortic stenosis undergoing aortic valve replacement. Mechanistically, we demonstrate that a conformational change in Cavß2 triggered by Akt phosphorylation increases LTCC density at the cardiac plasma membrane, and thus the inward calcium current, through a complex pathway involving reduction of Cavα1.2 retrograde trafficking and protein degradation through the prevention of dynamin-mediated LTCC endocytosis; promotion of Cavα1.2 anterograde trafficking by blocking Kir/Gem-dependent sequestration of Cavß2, thus facilitating the chaperoning of Cavα1.2; and promotion of Cavα1.2 transcription by the prevention of Kir/Gem-mediated shuttling of Cavß2 to the nucleus, where it limits the transcription of Cavα1.2 through recruitment of the heterochromatin protein 1γ epigenetic repressor to the Cacna1c promoter. On the basis of this mechanism, we developed a novel mimetic peptide that, through targeting of Cavß2, corrects LTCC life-cycle alterations, facilitating the proper function of cardiac cells. Delivery of mimetic peptide into a mouse model of diabetic cardiac disease associated with LTCC abnormalities restored impaired calcium balance and recovered cardiac function. CONCLUSIONS: We have uncovered novel mechanisms modulating LTCC trafficking and life cycle and provide proof of concept for the use of Cavß2 mimetic peptide as a novel therapeutic tool for the improvement of cardiac conditions correlated with alterations in LTCC levels and function.


Assuntos
Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Peptidomiméticos/administração & dosagem , Peptidomiméticos/metabolismo , Sequência de Aminoácidos , Animais , Materiais Biomiméticos/química , Canais de Cálcio Tipo L/genética , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptidomiméticos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Estudos Retrospectivos
14.
Nanomedicine (Lond) ; 11(8): 891-906, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26979495

RESUMO

AIM: To develop biocompatible and bioresorbable negatively charged calcium phosphate nanoparticles (CaP-NPs) as an innovative therapeutic system for the delivery of bioactive molecules to the heart. MATERIALS & METHODS: CaP-NPs were synthesized via a straightforward one-pot biomineralization-inspired protocol employing citrate as a stabilizing agent and regulator of crystal growth. CaP-NPs were administered to cardiac cells in vitro and effects of treatments were assessed. CaP-NPs were administered in vivo and delivery of microRNAs was evaluated. RESULTS: CaP-NPs efficiently internalized into cardiomyocytes without promoting toxicity or interfering with any functional properties. CaP-NPs successfully encapsulated synthetic microRNAs, which were efficiently delivered into cardiac cells in vitro and in vivo. CONCLUSION: CaP-NPs are a safe and efficient drug-delivery system for potential therapeutic treatments of polarized cells such as cardiomyocytes.


Assuntos
Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , MicroRNAs/administração & dosagem , Miócitos Cardíacos/metabolismo , Nanopartículas/química , Animais , Materiais Biocompatíveis/metabolismo , Fosfatos de Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Humanos , Camundongos Endogâmicos C57BL , Nanopartículas/metabolismo
15.
J Biomed Mater Res A ; 104(6): 1398-407, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26822463

RESUMO

In first part of this experiment, biocompatibility of the newly developed electroactive polyurethane/siloxane films containing aniline tetramer moieties was demonstrated with proliferation and differentiation of C2C12 myoblasts. Here we further assessed the cytocompatibility of the prepared samples with HL1-cell line, the electrophysiological properties and the patch clamp recording of the seeded cells over the selected electroactive sample. Presence of electroactive aniline tetramer in the structure of polyurethane/siloxane led to the increased expression of cardiac-specific genes of HL-1 cells involved in muscle contraction and electrical coupling. Our results showed that expression of Cx43, TrpT-2, and SERCA genes was significantly increased in conductive sample compared to tissue culture plate and the corresponding non-conductive analogous. The prepared materials were not only biocompatible in terms of cellular toxicity, but did not alter the intrinsic electrical characteristics of HL-1 cells. Embedding the electroactive moiety into the prepared films improved the properties of these polymeric cardiac construct through the enhanced transmission of electrical signals between the cells. Based on morphological observation, calcium imaging and electrophysiological recordings, we demonstrated the potential applicability of these materials for cardiac tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1398-1407, 2016.


Assuntos
Óleo de Rícino/química , Condutividade Elétrica , Fenômenos Eletrofisiológicos , Coração/fisiologia , Poliuretanos/química , Siloxanas/química , Animais , Linhagem Celular , Forma Celular , Regulação da Expressão Gênica , Potenciais da Membrana , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Engenharia Tecidual/métodos
16.
J Biomed Mater Res A ; 104(3): 775-787, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26540140

RESUMO

Tissue-engineered cardiac patch aims at regenerating an infarcted heart by improving cardiac function and providing mechanical support to the diseased myocardium. In order to take advantages of electroactivity, a new synthetic method was developed for the introduction of an electroactive oligoaniline into the backbone of prepared patches. For this purpose, a series of electroactive polyurethane/siloxane films containing aniline tetramer (AT) was prepared through sol-gel reaction of trimethoxysilane functional intermediate polyurethane prepolymers made from castor oil and poly(ethylene glycol). Physicochemical, mechanical, and electrical conductivity of samples were evaluated and the recorded results were correlated to their structural characteristics. The optimized films were proved to be biodegradable and have tensile properties suitable for cardiac patch application. The embedded AT moieties in the backbone of the prepared samples preserved their electroactivity with the electrical conductivity in the range of 10-4 S/cm. The prepared films were compatible with proliferation of C2C12 and had potential for enhancing myotube formation even without external electrical stimulation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 775-787, 2016.


Assuntos
Óleo de Rícino/química , Diferenciação Celular/efeitos dos fármacos , Condutividade Elétrica , Mioblastos/citologia , Poliuretanos/síntese química , Poliuretanos/farmacologia , Siloxanas/síntese química , Siloxanas/farmacologia , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Elasticidade , Técnicas Eletroquímicas , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Poliuretanos/química , Siloxanas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Engenharia Tecidual/métodos , Viscosidade
17.
Cardiovasc Res ; 104(3): 489-500, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25344366

RESUMO

AIMS: Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. METHODS AND RESULTS: Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. CONCLUSIONS: The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled hearts.


Assuntos
Arritmias Cardíacas/etiologia , Miócitos Cardíacos/fisiologia , Miofibroblastos/fisiologia , Animais , Células Cultivadas , Fibrose , Potenciais da Membrana , Miocárdio/patologia , Técnicas de Patch-Clamp , Ratos Wistar , Estresse Mecânico
18.
Circ Res ; 109(10): 1120-31, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21921266

RESUMO

RATIONALE: Myofibroblasts typically appear in the myocardium after insults to the heart like mechanical overload and infarction. Apart from contributing to fibrotic remodeling, myofibroblasts induce arrhythmogenic slow conduction and ectopic activity in cardiomyocytes after establishment of heterocellular electrotonic coupling in vitro. So far, it is not known whether α-smooth muscle actin (α-SMA) containing stress fibers, the cytoskeletal components that set myofibroblasts apart from resident fibroblasts, are essential for myofibroblasts to develop arrhythmogenic interactions with cardiomyocytes. OBJECTIVE: We investigated whether pharmacological ablation of α-SMA containing stress fibers by actin-targeting drugs affects arrhythmogenic myofibroblast-cardiomyocyte cross-talk. METHODS AND RESULTS: Experiments were performed with patterned growth cell cultures of neonatal rat ventricular cardiomyocytes coated with cardiac myofibroblasts. The preparations exhibited slow conduction and ectopic activity under control conditions. Exposure to actin-targeting drugs (Cytochalasin D, Latrunculin B, Jasplakinolide) for 24 hours led to disruption of α-SMA containing stress fibers. In parallel, conduction velocities increased dose-dependently to values indistinguishable from cardiomyocyte-only preparations and ectopic activity measured continuously over 24 hours was completely suppressed. Mechanistically, antiarrhythmic effects were due to myofibroblast hyperpolarization (Cytochalasin D, Latrunculin B) and disruption of heterocellular gap junctional coupling (Jasplakinolide), which caused normalization of membrane polarization of adjacent cardiomyocytes. CONCLUSIONS: The results suggest that α-SMA containing stress fibers importantly contribute to myofibroblast arrhythmogeneicity. After ablation of this cytoskeletal component, cells lose their arrhythmic effects on cardiomyocytes, even if heterocellular electrotonic coupling is sustained. The findings identify α-SMA containing stress fibers as a potential future target of antiarrhythmic therapy in hearts undergoing structural remodeling.


Assuntos
Actinas/antagonistas & inibidores , Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Fibras de Estresse/efeitos dos fármacos , Actinas/metabolismo , Potenciais de Ação , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Comunicação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocalasina D/farmacologia , Depsipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Fenótipo , Ratos , Ratos Wistar , Fibras de Estresse/metabolismo , Tiazolidinas/farmacologia , Fatores de Tempo
19.
Hepatology ; 54(4): 1282-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21809354

RESUMO

UNLABELLED: Intrahepatic cholestasis of pregnancy may be complicated by fetal arrhythmia, fetal hypoxia, preterm labor, and, in severe cases, intrauterine death. The precise etiology of fetal death is not known. However, taurocholate has been demonstrated to cause arrhythmia and abnormal calcium dynamics in cardiomyocytes. To identify the underlying reason for increased susceptibility of fetal cardiomyocytes to arrhythmia, we studied myofibroblasts (MFBs), which appear during structural remodeling of the adult diseased heart. In vitro, they depolarize rat cardiomyocytes via heterocellular gap junctional coupling. Recently, it has been hypothesized that ventricular MFBs might appear in the developing human heart, triggered by physiological fetal hypoxia. However, their presence in the fetal heart (FH) and their proarrhythmogenic effects have not been systematically characterized. Immunohistochemistry demonstrated that ventricular MFBs transiently appear in the human FH during gestation. We established two in vitro models of the maternal heart (MH) and FH, both exposed to increasing doses of taurocholate. The MH model consisted of confluent strands of rat cardiomyocytes, whereas for the FH model, we added cardiac MFBs on top of cardiomyocytes. Taurocholate in the FH model, but not in the MH model, slowed conduction velocity from 19 to 9 cm/s, induced early after depolarizations, and resulted in sustained re-entrant arrhythmias. These arrhythmic events were prevented by ursodeoxycholic acid, which hyperpolarized MFB membrane potential by modulating potassium conductance. CONCLUSION: These results illustrate that the appearance of MFBs in the FH may contribute to arrhythmias. The above-described mechanism represents a new therapeutic approach for cardiac arrhythmias at the level of MFB.


Assuntos
Arritmias Cardíacas/prevenção & controle , Colestase Intra-Hepática/complicações , Coração Fetal/efeitos dos fármacos , Ácido Ursodesoxicólico/farmacologia , Adulto , Animais , Antiarrítmicos/administração & dosagem , Antiarrítmicos/farmacologia , Arritmias Cardíacas/etiologia , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Colestase Intra-Hepática/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/citologia , Ventrículos do Coração/patologia , Humanos , Técnicas In Vitro , Células Musculares/citologia , Células Musculares/fisiologia , Gravidez , Complicações na Gravidez/diagnóstico , Complicações na Gravidez/tratamento farmacológico , Ratos , Ratos Wistar , Resultado do Tratamento , Ácido Ursodesoxicólico/administração & dosagem
20.
Circ Res ; 101(8): 755-8, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17872460

RESUMO

Focal ectopic activity in cardiac tissue is a key factor in the initiation and perpetuation of tachyarrhythmias. Because myofibroblasts as present in fibrotic remodeled myocardia and infarct scars depolarize cardiomyocytes by heterocellular electrotonic interactions via gap junctions in vitro, we investigated using strands of cultured ventricular cardiomyocytes coated with myofibroblasts, whether this interaction might give rise to depolarization-induced abnormal automaticity. Whereas uncoated cardiomyocyte strands were invariably quiescent, myofibroblasts induced synchronized spontaneous activity in a density dependent manner. Activations appeared at spatial myofibroblast densities >15.7% and involved more than 80% of the preparations at myofibroblast densities of 50%. Spontaneous activity was based on depolarization-induced automaticity as evidenced by: (1) suppression of activity by the sarcolemmal K(ATP) channel opener P-1075; (2) induction of activity in current-clamped single cardiomyocytes undergoing depolarization to potentials similar to those induced by myofibroblasts in cardiomyocyte strands; and (3) induction of spontaneous activity in cardiomyocyte strands coated with connexin 43 transfected Hela cells but not with communication deficient HeLa wild-type cells. Apart from unveiling the mechanism underlying the hallmark of monolayer cultures of cardiomyocytes, ie, spontaneous electromechanical activity, these findings open the perspective that myofibroblasts present in structurally remodeled myocardia following pressure overload and infarction might contribute to arrhythmogenesis by induction of ectopic activity.


Assuntos
Fibroblastos/fisiologia , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Complexos Ventriculares Prematuros/fisiopatologia , Animais , Fibroblastos/citologia , Células HeLa , Humanos , Miócitos Cardíacos/citologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...