Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 326: 103135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520888

RESUMO

Colloidal systems and soft materials are well suited to neutron scattering, and the community has readily adopted elastic scattering techniques to investigate their structure. Due to their unique properties, neutrons may also be used to characterize the dynamics of soft materials over a wide range of length and time scales in situ. Both static structures and an understanding of how molecules move about their equilibrium positions is essential if we are to deliver on the promise of rationally designing soft materials. In this review we introduce the basics of neutron spectroscopy and explore the ways in which inelastic neutron scattering can be used to study colloidal and soft materials. Illustrative examples are chosen that highlight the phenomena suitable for investigation using this suite of techniques.

2.
J Colloid Interface Sci ; 657: 320-326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38043233

RESUMO

HYPOTHESIS: The self-assembly structures and phase behaviour of phospholipids in protic ionic liquids (ILs) depend on intermolecular forces that can be controlled through changes in the size, polarity, and H-bond capacity of the solvent. EXPERIMENTS: The structure and temperature stability of the self-assembled phases formed by four phospholipids in three ILs was determined by a combination of small- and wide-angle X-ray scattering (SAXS and WAXS) and small-angle neutron scattering (SANS). The phospholipids have identical phosphocholine head groups but different alkyl tail lengths and saturations (DOPC, POPC, DPPC and DSPC), while the ILs' amphiphilicity, H-bond network density and polarity are varied between propylammonium nitrate (PAN) to ethylammonium nitrate (EAN) to ethanolammonium nitrate (EtAN). FINDINGS: The observed structures and phase behaviour of the lipids becomes more surfactant-like with decreasing average solvent polarity, H-bond network density and surface tension. In PAN, all the investigated phospholipids behave like surfactants in water. In EAN they exhibit anomalous phase sequences and unexpected transitions as a function of temperature, while EtAN supports structures that share characteristics with water and EAN. Structures formed are also sensitive to proximity to the lipid chain melting temperature.

3.
J Colloid Interface Sci ; 643: 276-281, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37068361

RESUMO

HYPOTHESIS: The forces that govern lipid self-assembly ionic liquids are similar to water, but their different balance can result in unexpected behaviour. EXPERIMENTS: The self-assembly behaviour and phase equilibria of two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in the most common protic ionic liquid, ethylammonium nitrate (EAN) have been investigated as function of composition and temperature by small- and wide-angle X-ray scattering (SAXS/WAXS) and small-angle neutron scattering (SANS). FINDINGS: Both lipids form unusual self-assembly structures and show complex and unexpected phase behaviour unlike that seen in water; DSPC undergoes a gel Lß to crystalline Lc phase transition on warming, while POPC forms worm-like micelles L1 upon dilution. This surprising phase behaviour is attributed to the large size of the EAN ions that solvate the lipid headgroup compared to water changing amphiphile packing. Weaker H-bonding between EAN and lipid headgroups also contributes. These results provide new insight for the design of lipid based nanostructured materials in ionic liquids with atypical properties.

4.
J Colloid Interface Sci ; 620: 419-430, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35439693

RESUMO

Cervical cancer is one of the most common cancers affecting women worldwide. There are an estimated 570.000 new cases of cervical cancer each year and conventional treatments can cause severe side effects. In this work, we developed a platform for vaginal administration of lipophilic drugs for cervical cancer treatment. We formulated mucoadhesive cubosomes for the delivery of curcumin, a lipophilic drug for cervical cancer treatment, to increase its bioavailability and local absorption. This study tests the use of cubosomes for vaginal drug administration and assesses their potential efficiency using the CAM (chick embryo chorioallantoic membrane) model. SAXS (small-angle X-ray scattering), cryo-TEM (cryo-transmission electron microscopy), and dynamic light scattering (DLS) were employed to characterise the system. With ex vivo permeation and retention studies, we find that the curcumin released from our system is retained in the vaginal mucosa. In vitro cytotoxicity assay and cellular uptake showed an increased cytotoxic effect of curcumin against HeLa cell line when incorporated into the cubosomes. The curcumin-loaded cubosomes also demonstrated an antiangiogenic effect evaluated in vivo by the CAM model.


Assuntos
Curcumina , Neoplasias do Colo do Útero , Animais , Embrião de Galinha , Curcumina/farmacologia , Feminino , Células HeLa , Humanos , Espalhamento a Baixo Ângulo , Neoplasias do Colo do Útero/tratamento farmacológico , Difração de Raios X
5.
J Colloid Interface Sci ; 588: 767-775, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33309146

RESUMO

Colloidal lipidic particles with different space groups and geometries (mesosomes) are employed in the development of new nanosystems for the oral delivery of drugs and nutrients. Understanding of the enzymatic digestion rate of these particles is key to the development of novel formulations. In this work, the molecular structure of the lipids has been systematically tuned to examine the effect on their self-assembly and digestion rate. The kinetic and phase changes during the lipase-catalysed hydrolysis of mesosomes formed by four synthetic cyclopropanated lipids and their cis-unsaturated analogues were monitored by dynamic small angle X-ray scattering and acid/base titration. It was established that both the phase behaviour and kinetics of the hydrolysis are greatly affected by small changes in the molecular structure of the lipid as well as by the internal nanostructure of the colloidal particles.

6.
Nanoscale Horiz ; 5(6): 914-927, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32322863

RESUMO

Lipidic mesophases are versatile bioorganic materials that have been effectively employed as nanoscale matrices for membrane protein crystallization, drug delivery and as food emulsifiers over the last 30 years. In this review, the focus is upon studies that have employed non-lamellar lipid mesophases as matrices for organic, inorganic and enzymatic reactions. The ability of lipidic mesophases to incorporate hydrophilic, amphiphilic and hydrophobic molecules, together with the high interfacial area of the lipidic cubic and inverse hexagonal phases has been exploited in heterogeneous catalysis as well as for enzyme immobilization. The unique nanostructure of these mesophases is the driving force behind their ability to act as templates for synthesis, resulting in the creation of highly ordered polymeric and inorganic materials with complex geometries.


Assuntos
Lipídeos/química , Nanoestruturas/química , Enzimas Imobilizadas/química , Nanopartículas Metálicas/química , Compostos Orgânicos/química , Polímeros/síntese química , Dióxido de Silício/química
7.
Nat Nanotechnol ; 14(6): 609-615, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962546

RESUMO

Water is a ubiquitous liquid with unique physicochemical properties, whose nature has shaped our planet and life as we know it. Water in restricted geometries has different properties than in bulk. Confinement can prevent low-temperature crystallization of the molecules into a hexagonal structure and thus create a state of amorphous water. To understand the survival of life at subzero temperatures, it is essential to elucidate this behaviour in the presence of nanoconfining lipidic membranes. Here we introduce a family of synthetic lipids with designed cyclopropyl modifications in the hydrophobic chains that exhibit unique liquid-crystalline behaviour at low temperature, which enables the maintenance of amorphous water down to ~10 K due to nanoconfinement. The combination of experiments and molecular dynamics simulations unveils a complex lipid-water phase diagram in which bicontinuous cubic and lamellar liquid crystalline phases that contain subzero liquid, glassy or ice water emerge as a competition between the two components, each pushing towards its thermodynamically favoured state.

8.
Langmuir ; 35(1): 120-127, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30517017

RESUMO

Lipidic cubic phases (LCPs) can reduce Pd2+ salts to palladium nanoparticles (PdNPs) of ∼5 nm size in their confined water channels under mild conditions. The resulting PdNP-containing LCPs were used as nanoreactor scaffolds to catalyze Suzuki-Miyaura cross-coupling reactions in the aqueous channels of the mesophase. To turn on catalysis, PdNP-containing LCPs were activated by swelling the aqueous channels of the lipidic framework, thereby enabling diffusion of the water-soluble substrates to the catalysts. The mesophases play a threefold role: they act as reducing agents for Pd2+, as limiting templates for their growth, and as support. The system was characterized and investigated by small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy, dynamic light scattering, and nuclear magnetic resonance. Bulk LCPs and three dispersed palladium/lipid hybrid nanoparticle types were applied in the catalysis. The latter-liposomes, hexosomes, and cubosomes-can be obtained by design through combination of lipids and additives. The Suzuki-Miyaura cross-coupling of 5-iodo-2'-deoxyuridine and phenylboronic acid was used as a model reaction to study these systems. Bulk Pd-LCPs deliver the Suzuki-Miyaura product in 24 h in conversions up to 98% at room temperature, whereas with palladium/lipid dispersions at 40 °C, 68% of the starting material was transformed to the product after 72 h.

9.
ACS Appl Mater Interfaces ; 10(5): 5114-5124, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29313658

RESUMO

The unique molecular architecture of lipidic cubic phases (LCPs) and their cubosome dispersions comprise a well-defined, curved bilayer that spans the entire three-dimensional (3-D) material space, encompassing a network of two periodic, curved, and nonintersecting 3-D aqueous channels. The ensuing large lipid/water interfacial area makes these biomaterials an interesting matrix for the lateral immobilization of organocatalysts to catalyze organic reactions in confined water. Herein, we report for the first time the design, synthesis, assembly, and characterization of catalytically active LCPs and cubosomes and demonstrate their applicability as self-assembled, biomimetic, and recyclable nanoreactor scaffolds. Small-angle X-ray scattering, cryo-transmission electron microscopy, and dynamic light scattering were applied for the characterization of the mesophases. These mesophases can be recycled and enable efficient catalytic activity as well as modulation of the diastereo- and enantioselectivity for the aldol reaction of several benzaldehyde derivatives and cyclohexanone in water.

10.
Proc Natl Acad Sci U S A ; 113(27): 7491-6, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27313210

RESUMO

Functional reconstitution of membrane proteins within lipid bilayers is crucial for understanding their biological function in living cells. While this strategy has been extensively used with liposomes, reconstitution of membrane proteins in lipidic cubic mesophases presents significant challenges related to the structural complexity of the lipid bilayer, organized on saddle-like minimal surfaces. Although reconstitution of membrane proteins in lipidic cubic mesophases plays a prominent role in membrane protein crystallization, nanotechnology, controlled drug delivery, and pathology of diseased cells, little is known about the molecular mechanism of protein reconstitution and about how transport properties of the doped mesophase mirror the original molecular gating features of the reconstituted membrane proteins. In this work we design a general strategy to demonstrate correct functional reconstitution of active and selective membrane protein transporters in lipidic mesophases, exemplified by the bacterial ClC exchanger from Escherichia coli (EcClC) as a model ion transporter. We show that its correct reconstitution in the lipidic matrix can be used to generate macroscopic proton and chloride pumps capable of selectively transporting charges over the length scale of centimeters. By further exploiting the coupled chloride/proton exchange of this membrane protein and by combining parallel or antiparallel chloride and proton gradients, we show that the doped mesophase can operate as a charge separation device relying only on the reconstituted EcClC protein and an external bias potential. These results may thus also pave the way to possible applications in supercapacitors, ion batteries, and molecular pumps.


Assuntos
Canais de Cloreto/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Membrana Celular/química , Canais de Cloreto/química , Proteínas de Escherichia coli/química
11.
Angew Chem Int Ed Engl ; 54(3): 1027-31, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25418121

RESUMO

Lipidic cubic phases (LCPs) are used in areas ranging from membrane biology to biodevices. Because some membrane proteins are notoriously unstable at room temperature, and available LCPs undergo transformation to lamellar phases at low temperatures, development of stable low-temperature LCPs for biophysical studies of membrane proteins is called for. Monodihydrosterculin (MDS) is a designer lipid based on monoolein (MO) with a configurationally restricted cyclopropyl ring replacing the olefin. Small-angle X-ray scattering (SAXS) analyses revealed a phase diagram for MDS lacking the high-temperature, highly curved reverse hexagonal phase typical for MO, and extending the cubic phase boundary to lower temperature, thereby establishing the relationship between lipid molecular structure and mesophase behavior. The use of MDS as a new material for LCP-based membrane protein crystallization at low temperature was demonstrated by crystallizing bacteriorhodopsin at 20 °C as well as 4 °C.


Assuntos
Glicerídeos/química , Proteínas de Membrana/química , Bacteriorodopsinas/química , Temperatura Baixa , Cristalização , Proteínas de Membrana/metabolismo , Transição de Fase , Espalhamento a Baixo Ângulo , Difração de Raios X
12.
Langmuir ; 30(38): 11301-6, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25185719

RESUMO

The specificity of carbohydrate-lectin interaction has been reported as an attractive strategy for drug delivery in cancer therapy because of the high levels of lectins in several human malignancies. A novel cationic glucosylated amphiphile was therefore synthesized, as a model system, to attribute specificity toward d-glucose receptors to liposome formulations. Fluorescence experiments demonstrated that the monomeric glucosylated amphiphile is capable of interacting with fluorescently labeled concanavalin A, a D-glucose specific plant lectin. The interaction of concanavalin A with liposomes composed of a phospholipid and the glucosylated amphiphile was demonstrated by agglutination observed by optical density and dynamic laser light scattering measurements, thus paving the way to the preparation of other glycosilated amphiphiles differing for the length of polyoxyethylenic spacer, the sugar moieties, and/or the length of the hydrophobic chain.


Assuntos
Concanavalina A/química , Lipossomos/química , Tensoativos/química , Cátions/síntese química , Cátions/química , Glicosilação , Lipossomos/síntese química , Modelos Moleculares , Estrutura Molecular , Tensoativos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...