Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Rep ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629495

RESUMO

Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.

2.
Heliyon ; 10(6): e27336, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38501015

RESUMO

Ovarian cancer (OC) is deadly, and likely arises from the fallopian tube epithelium (FTE). Despite the association of OC with ovulation, OC typically presents in post-menopausal women who are no longer ovulating. The goal of this study was to understand how ovulation and aging interact to impact OC progression from the FTE. Follicular fluid released during ovulation induces DNA damage in the FTE, however, the role of aging on FTE exposure to follicular fluid is unexplored. Follicular fluid samples were collected from 14 women and its effects on FTE cells was assessed. Follicular fluid caused DNA damage and lipid oxidation in an age-dependent manner, but instead induced cell proliferation in a dose-dependent manner, independent of age in FTE cells. Follicular fluid regardless of age disrupted FTE spheroid formation and stimulated attachment and growth on ultra-low attachment plates. Proteomics analysis of the adhesion proteins in the follicular fluid samples identified vitronectin, a glycoprotein responsible for FTE cell attachment and spreading.

3.
Nat Prod Rep ; 40(7): 1250-1270, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37387219

RESUMO

Covering: 2015 through the end of July 2022Ovarian cancer is one of the most common cancers affecting the female reproductive organs and has the highest mortality rate among gynecological cancers. Although botanical drugs and their derivatives, namely members of the taxane and camptothecin families, represent significant therapeutics currently available for the treatment of ovarian cancer, new drugs that have alternative mechanisms of action are still needed to combat the disease. For this reason, many efforts to identify additional novel compounds from botanical sources, along with the further development of existing therapeutics, have continued to appear in the literature. This review is designed to serve as a comprehensive look at both the currently available small-molecule therapeutic options and the recently reported botanically-derived natural products currently being studied and developed as potential future therapeutics that could one day be used against ovarian cancer. Specifically, key properties, structural features, and biological data are highlighted that are important for the successful development of potential agents. Recently reported examples are specifically discussed in the context of "drug discovery attributes," including the presence of structure-activity relationship, mechanism of action, toxicity, and pharmacokinetic studies, to help indicate the potential for future development and to highlight where these compounds currently exist in the development process. The lessons learned from both the successful development of the taxanes and camptothecins, as well as the strategies currently being employed for new drug development, are expected to ultimately help guide the future development of botanical natural products for ovarian cancer.


Assuntos
Produtos Biológicos , Neoplasias Ovarianas , Feminino , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico
4.
Neoplasia ; 36: 100866, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586182

RESUMO

High grade serous ovarian cancer (HGSC) arises from the fimbriated end of the fallopian tube epithelium (FTE), and in some cases, the ovarian surface epithelium (OSE). PAX8 is a commonly used biomarker for HGSC and is expressed in ∼90% of HGSC. Although the OSE does not express PAX8, murine models of HGSC derived from the OSE acquire PAX8, suggesting that it is not only a marker of Müllerian origin, but also an essential part of cancer progression, potentially from both the OSE and FTE. Previously, we have shown that PAX8 loss in HGSC cells causes tumor cell death and reduces cell migration and invasion. Herein, secretome analysis was performed in PAX8 deleted cells and we identified a reduction of the extracellular matrix (ECM) components, collagen and fibronectin. Immunoblotting and immunofluorescence in PAX8 deleted HGSC cells further validated the results from the secretome analysis. PAX8 loss reduced the amount of secreted TGFbeta, a cytokine that plays a crucial role in remodelling the tumor microenvironment. Furthermore, PAX8 loss reduced the integrity of 3D spheroids and caused a reduction of ECM proteins fibronectin and collagen in 3D cultures. Due to the ubiquitous nature of PAX8 in HGSC, regardless of cell origin, and the association of its reduced expression with decreasing tumor burden, a PAX8 inhibitor could be a promising drug target against various types of HGSC. To accomplish this, we generated a murine oviductal epithelial (MOE) cell line stably expressing PAX8 promoter-luciferase. Using this cell line, we performed a screening assay with a library of FDA-approved drugs (Prestwick Library) and quantitatively assessed these compounds for their inhibition of PAX8. We identified two hits: losartan and captropril, both inhibitors of the renin-angiotensin pathway that inhibit PAX8 expression and function. Overall, this study validates PAX8 as a regulator of ECM deposition in the tumor microenvironment.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Camundongos , Humanos , Animais , Feminino , Neoplasias Ovarianas/patologia , Fibronectinas/genética , Fibronectinas/metabolismo , Cistadenocarcinoma Seroso/patologia , Microambiente Tumoral , Secretoma , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo
5.
Biology (Basel) ; 11(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35453780

RESUMO

Neural Wiskott-Aldrich Syndrome Protein (N-WASP) regulates actin cytoskeleton remodeling. It has been known that reduced N-WASP expression in breast and colorectal cancers is associated with poor prognosis. Here, we found reduced N-WASP expression in squamous cell carcinoma (SCC) patient samples. The SCC cell line HSC-5 with reduced N-WASP expression was used to generate HSC-5CN (control) and HSC-5NW (N-WASP overexpression) cells. HSC-5NW cells had reduced cell proliferation and migration compared to HSC-5CN cells. HSC-5NW cells had increased phospho-ERK2 (extracellular signal-regulated kinase 2), phosphorylated Forkhead box protein class O1 (FOXO1) and reduced nuclear FOXO1 staining compared to HSC-5CN cells. Proteasome inhibition stabilized total FOXO1, however, not nuclear staining, suggesting that FOXO1 could be degraded in the cytoplasm. Inhibition of ERK2 enhanced nuclear FOXO1 levels and restored cell proliferation and migration of HSC-5NW to those of HSC-5CN cells, suggesting that ERK2 regulates FOXO1 activity. The expression of thioredoxin-interacting protein (TXNIP), a FOXO1 target that inhibits thioredoxin and glucose uptake, was higher in HSC-5NW cells than in HSC-5CN cells. Knockdown of TXNIP in HSC-5NW cells restored cell proliferation and migration to those of HSC-5CN cells. Thus, we propose that N-WASP regulates cell proliferation and migration via an N-WASP-ERK2-FOXO1-TXNIP pathway.

6.
Cell Death Dis ; 13(1): 45, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013112

RESUMO

PHY34 is a synthetic small molecule, inspired by a compound naturally occurring in tropical plants of the Phyllanthus genus. PHY34 was developed to have potent in vitro and in vivo anticancer activity against high grade serous ovarian cancer (HGSOC) cells. Mechanistically, PHY34 induced apoptosis in ovarian cancer cells by late-stage autophagy inhibition. Furthermore, PHY34 significantly reduced tumor burden in a xenograft model of ovarian cancer. In order to identify its molecular target/s, we undertook an unbiased approach utilizing mass spectrometry-based chemoproteomics. Protein targets from the nucleocytoplasmic transport pathway were identified from the pulldown assay with the cellular apoptosis susceptibility (CAS) protein, also known as CSE1L, representing a likely candidate protein. A tumor microarray confirmed data from mRNA expression data in public databases that CAS expression was elevated in HGSOC and correlated with worse clinical outcomes. Overexpression of CAS reduced PHY34 induced apoptosis in ovarian cancer cells based on PARP cleavage and Annexin V staining. Compounds with a diphyllin structure similar to PHY34 have been shown to inhibit the ATP6V0A2 subunit of V(vacuolar)-ATPase. Therefore, ATP6V0A2 wild-type and ATP6V0A2 V823 mutant cell lines were tested with PHY34, and it was able to induce cell death in the wild-type at 246 pM while the mutant cells were resistant up to 55.46 nM. Overall, our data demonstrate that PHY34 is a promising small molecule for cancer therapy that targets the ATP6V0A2 subunit to induce autophagy inhibition while interacting with CAS and altering nuclear localization of proteins.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteína de Suscetibilidade a Apoptose Celular/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Neoplasias Ovarianas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína de Suscetibilidade a Apoptose Celular/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Phyllanthus/química , Prognóstico
7.
Mol Cancer Ther ; 19(1): 89-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31909733

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy in women worldwide and the fifth most common cause of cancer-related deaths among U.S. women. New therapies are needed to treat HGSOC, particularly because most patients develop resistance to current first-line therapies. Many natural product and fungal metabolites exhibit anticancer activity and represent an untapped reservoir of potential new agents with unique mechanism(s) of action. Verticillin A, an epipolythiodioxopiperazine alkaloid, is one such compound, and our recent advances in fermentation and isolation are now enabling evaluation of its anticancer activity. Verticillin A demonstrated cytotoxicity in HGSOC cell lines in a dose-dependent manner with a low nmol/L IC50 Furthermore, treatment with verticillin A induced DNA damage and caused apoptosis in HGSOC cell lines OVCAR4 and OVCAR8. RNA-Seq analysis of verticillin A-treated OVCAR8 cells revealed an enrichment of transcripts in the apoptosis signaling and the oxidative stress response pathways. Mass spectrometry histone profiling confirmed reports that verticillin A caused epigenetic modifications with global changes in histone methylation and acetylation marks. To facilitate in vivo delivery of verticillin A and to monitor its ability to reduce HGSOC tumor burden, verticillin A was encapsulated into an expansile nanoparticle (verticillin A-eNP) delivery system. In an in vivo human ovarian cancer xenograft model, verticillin A-eNPs decreased tumor growth and exhibited reduced liver toxicity compared with verticillin A administered alone. This study confirmed that verticillin A has therapeutic potential for treatment of HGSOC and that encapsulation into expansile nanoparticles reduced liver toxicity.


Assuntos
Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Dano ao DNA/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Animais , Apoptose , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias Ovarianas/patologia , Carga Tumoral
8.
Carcinogenesis ; 41(5): 646-655, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271204

RESUMO

High-grade serous ovarian cancer (HGSOC) is thought to progress from a series of precursor lesions in the fallopian tube epithelium (FTE). One of the preneoplastic lesions found in the FTE is called a secretory cell outgrowth (SCOUT), which is partially defined by a loss of paired box 2 (PAX2). In the present study, we developed PAX2-deficient murine cell lines in order to model a SCOUT and to explore the role of PAX2 loss in the etiology of HGSOC. Loss of PAX2 alone in the murine oviductal epithelium (MOE) did not induce changes in proliferation, migration and survival in hypoxia or contribute to resistance to first line therapies, such as cisplatin or paclitaxel. RNA sequencing of MOE PAX2shRNA cells revealed significant alterations in the transcriptome. Silencing of PAX2 in MOE cells produced a messenger RNA expression pattern that recapitulated several aspects of the transcriptome of previously characterized human SCOUTs. RNA-seq analysis and subsequent qPCR validation of this SCOUT model revealed an enrichment of genes involved in estrogen signaling and an increase in expression of estrogen receptor α. MOE PAX2shRNA cells had higher estrogen signaling activity and higher expression of putative estrogen responsive genes both in the presence and absence of exogenous estrogen. In summary, loss of PAX2 in MOE cells is sufficient to transcriptionally recapitulate a human SCOUT, and this model revealed an enrichment of estrogen signaling as a possible route for tumor progression of precursor lesions in the fallopian tube.


Assuntos
Epitélio/patologia , Estrogênios/metabolismo , Neoplasias das Tubas Uterinas/patologia , Tubas Uterinas/patologia , Fator de Transcrição PAX2/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Neoplasias das Tubas Uterinas/tratamento farmacológico , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/metabolismo , Tubas Uterinas/efeitos dos fármacos , Tubas Uterinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Receptores de Estrogênio/genética , Transdução de Sinais , Transcriptoma , Células Tumorais Cultivadas
9.
J Proteome Res ; 19(1): 503-510, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31738564

RESUMO

Mass spectrometry (MS) offers high levels of specificity and sensitivity in clinical applications, and we have previously been able to demonstrate that matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS is capable of distinguishing two-component cell mixtures at low limits of detection. Ovarian cancer is notoriously difficult to detect due to the lack of diagnostic techniques available to the medical community. By sampling a local microenvironment, such as the vaginal canal and cervix, a MS based method is presented for monitoring disease progression from proximal samples to the diseased tissue. A murine xenograft model of high grade serous ovarian carcinoma (HGSOC) was used for this study, and vaginal lavages were obtained from mice on a weekly basis throughout disease progression and subjected to our MALDI-TOF MS workflow followed by statistical analyses. Proteins in the 4-20 kDa region of the mass spectrum yielded a fingerprint that we could consistently measure over time that correlated with disease progression. These fingerprints were found to be largely stable across all mice, with the protein fingerprint converging toward the end point of the study. MALDI-TOF MS serves as a unique analytical technique for measuring a sampled vaginal microenvironment in a specific and sensitive manner for the detection of HGSOC in a murine model.


Assuntos
Neoplasias Ovarianas/diagnóstico , Proteínas/análise , Vagina/metabolismo , Animais , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Camundongos Nus , Neoplasias Ovarianas/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Irrigação Terapêutica , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancers (Basel) ; 10(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096791

RESUMO

High-grade serous ovarian cancer is a deadly disease that can originate from the fallopian tube or the ovarian surface epithelium. The PAX (paired box) genes PAX2 and PAX8 are lineage-specific transcription factors required during development of the fallopian tube but not in the development of the ovary. PAX2 expression is lost early in serous cancer progression, while PAX8 is expressed ubiquitously. These proteins are implicated in migration, invasion, proliferation, cell survival, stem cell maintenance, and tumor growth. Hence, targeting PAX2 and PAX8 represents a promising drug strategy that could inhibit these pro-tumorigenic effects. In this review, we examine the implications of PAX2 and PAX8 expression in the cell of origin of serous cancer and their potential efficacy as drug targets by summarizing their role in the molecular pathogenesis of ovarian cancer.

11.
Biochem Biophys Rep ; 9: 13-21, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28955984

RESUMO

Cancer cell migration and invasion involves temporal and spatial regulation of actin cytoskeleton reorganization, which is regulated by the WASP family of proteins such as N-WASP (Neural- Wiskott Aldrich Syndrome Protein). We have previously shown that expression of N-WASP was increased under hypoxic conditions. In order to characterize the regulation of N-WASP expression, we constructed an N-WASP promoter driven GFP reporter construct, N-WASPpro-GFP. Transfection of N-WASPpro-GFP construct and plasmid expressing HiF1α (Hypoxia Inducible factor 1α) enhanced the expression of GFP suggesting that increased expression of N-WASP under hypoxic conditions is mediated by HiF1α. Sequence analysis of the N-WASP promoter revealed the presence of two hypoxia response elements (HREs) characterized by the consensus sequence 5'-GCGTG-3' at -132 bp(HRE1) and at -662 bp(HRE2) relative to transcription start site (TSS). Site-directed mutagenesis of HRE1(-132) but not HRE2(-662) abolished the HiF1α induced activation of N-WASP promoter. Similarly ChIP assay demonstrated that HiF1α bound to HRE1(-132) but not HRE2(-662) under hypoxic condition. MDA-MB-231 cells but not MDA-MB-231KD cells treated with hypoxia mimicking agent, DMOG showed enhanced gelatin degradation. Similarly MDA-MB-231KD(N-WASPpro-N-WASPR) cells expressing N-WASPR under the transcriptional regulation of WT N-WASPpro but not MDA-MB-231KD(N-WASPproHRE1-N-WASPR) cells expressing N-WASPR under the transcriptional regulation of N-WASPproHRE1 showed enhanced gelatin degradation when treated with DMOG. Thus indicating the importance of N-WASP in hypoxia induced invadopodia formation. Thus, our data demonstrates that hypoxia-induced activation of N-WASP expression is mediated by interaction of HiF1α with the HRE1(-132) and explains the role of N-WASP in hypoxia induced invadopodia formation.

12.
Biochem Biophys Res Commun ; 482(4): 1353-1359, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27939884

RESUMO

Cancer cell migration and invasion involves actin cytoskeleton reorganization, which is regulated by the WASP (Wiskott Aldrich Syndrome Protein) family of proteins such as WASP, N-WASP (Neural-WASP) and WASP interacting protein (WIP). In this study, we found that the expression of WIP was significantly upregulated in metastatic A5-RT3 cells compared to its parental non-tumorigenic HaCaT cells. Using A549 human lung adenocarcinoma cell line as the model system, we found that WIP regulates cell invasion, proliferation and anchorage-independent growth. Expression of WIP was enhanced during TGF-ß1 induced epithelial-mesenchymal transition (EMT) and overexpression of WIP accelerated EMT while knocking down WIP attenuated EMT associated morphological changes. Knocking down WIP expression in A549 cells significantly reduced RhoA levels and WIP was found to interact with RhoA suggesting that WIP might be executing its function by regulating RhoA. Acquisition of invasive, proliferative properties and anoikis resistance is the central step in metastasis indicating a novel function of WIP in cancer progression.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células A549 , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Células HEK293 , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Análise de Sequência de RNA , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...