Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol NMR ; 73(1-2): 81-91, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30762170

RESUMO

We describe a new labeling method that allows for full protonation at the backbone Hα position, maintaining protein side chains with a high level of deuteration. We refer to the method as alpha proton exchange by transamination (α-PET) since it relies on transaminase activity demonstrated here using Escherichia coli expression. We show that α-PET labeling is particularly useful in improving structural characterization of solid proteins by introduction of an additional proton reporter, while eliminating many strong dipolar couplings. The approach benefits from the high sensitivity associated with 1.3 mm samples, more abundant information including Hα resonances, and the narrow proton linewidths encountered for highly deuterated proteins. The labeling strategy solves amide proton exchange problems commonly encountered for membrane proteins when using perdeuteration and backexchange protocols, allowing access to alpha and all amide protons including those in exchange-protected regions. The incorporation of Hα protons provides new insights, as the close Hα-Hα and Hα-HN contacts present in ß-sheets become accessible, improving the chance to determine the protein structure as compared with HN-HN contacts alone. Protonation of the Hα position higher than 90% is achieved for Ile, Leu, Phe, Tyr, Met, Val, Ala, Gln, Asn, Thr, Ser, Glu, Asp even though LAAO is only active at this degree for Ile, Leu, Phe, Tyr, Trp, Met. Additionally, the glycine methylene carbon is labeled preferentially with a single deuteron, allowing stereospecific assignment of glycine alpha protons. In solution, we show that the high deuteration level dramatically reduces R2 relaxation rates, which is beneficial for the study of large proteins and protein dynamics. We demonstrate the method using two model systems, as well as a 32 kDa membrane protein, hVDAC1, showing the applicability of the method to study membrane proteins.


Assuntos
Deutério , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Prótons , Marcação por Isótopo , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Canal de Ânion 1 Dependente de Voltagem
2.
Proc Natl Acad Sci U S A ; 114(12): 3115-3120, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265100

RESUMO

Bacteria use membrane-integral sensor histidine kinases (HK) to perceive stimuli and transduce signals from the environment to the cytosol. Information on how the signal is transmitted across the membrane by HKs is still scarce. Combining both liquid- and solid-state NMR, we demonstrate that structural rearrangements in the extracytoplasmic, citrate-sensing Per-Arnt-Sim (PAS) domain of HK CitA are identical for the isolated domain in solution and in a longer construct containing the membrane-embedded HK and lacking only the kinase core. We show that upon citrate binding, the PAS domain contracts, resulting in a shortening of the C-terminal ß-strand. We demonstrate that this contraction of the PAS domain, which is well characterized for the isolated domain, is the signal transmitted to the transmembrane (TM) helices in a CitA construct in liposomes. Putting the extracytoplasmic PAS domain into context of the membrane-embedded CitA construct slows down citrate-binding kinetics by at least a factor of 60, confirming that TM helix motions are linked to the citrate-binding event. Our results are confirmation of a hallmark of the HK signal transduction mechanism with atomic resolution on a full-length construct lacking only the kinase core domain.


Assuntos
Histidina Quinase/química , Histidina Quinase/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Cítrico/química , Ácido Cítrico/metabolismo , Geobacillus , Histidina Quinase/genética , Proteínas de Membrana , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
3.
Chemistry ; 22(37): 13010-3, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27490777

RESUMO

The small-DNA human adenovirus encodes one of the most versatile molecular hubs, the E1A protein. This protein is essential for productive viral infection in human cells and a vast amount of biologically relevant data are available on its interactions with host proteins. Up to now, however, no high-resolution structural and dynamic information on E1A is available despite its important biological role. Among the different spliced variants of E1A, two are expressed at high level in the early stage of infection. These are 243 and 289 residues isoforms. Herein, we present their NMR characterization, showing that they are both highly disordered, but also demonstrate a certain heterogeneous behavior in terms of structural and dynamic properties. Furthermore, we present the characterization of the isolated domain of the longer variant, known as CR3. This study opens the way to understanding at the molecular level how E1A functions.


Assuntos
Proteínas E1A de Adenovirus/química , Adenovírus Humanos/química , Humanos , Agregados Proteicos , Domínios Proteicos , Isoformas de Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...