Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 927: 175043, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598847

RESUMO

Prostaglandins are bioactive lipids involved in many physiological and pathophysiological conditions, such as pain, atherosclerosis, type II diabetes, and parturition. Prostaglandin E2 (PGE2) activates four G protein-coupled receptors (GPCRs), named the PGE2 types 1-4 receptors (EP1-4), to elicit the intracellular signaling responsible for their physiological actions. There are more than twelve EP3 isoforms in humans that differ only by the sequence of their C-termini. However, the signaling mechanisms engaged by the various isoforms have never been clearly defined. In this study, we used a recently described BRET-based biosensor technology to define the signaling profiles for each of the human isoforms on a selection of signaling pathways using the agonists, PGE2 and sulprostone, and the purportedly EP3-specific antagonist L798106. We found that L798106 is a biased agonist of the Gαz pathway for some human EP3 isoforms, an effect that is not detected in the close ortholog mouse EP3 isoform α. We also found that the presence of a threonine residue at position 107 in the binding site of human EP3, which is a serine in most other species including mice, is important for L798106-mediated Gαz efficacy. Given the reported importance of EP3-Gαz signaling on the potential therapeutic efficacy of EP3 and since many preclinical studies for these mechanisms have been performed in rodents, this finding demonstrates the importance of determining a detailed signaling profile of ligands for different species and receptor isoforms, which constitutes an important step to better understand the therapeutic potential of the EP3.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Camundongos , Dor , Isoformas de Proteínas/metabolismo , Receptores de Prostaglandina E/metabolismo , Transdução de Sinais
2.
Front Microbiol ; 13: 1070116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36875533

RESUMO

Enterococcus faecalis is a commensal bacterium of the gastrointestinal tract but also a major nosocomial pathogen. This bacterium uses regulators like BglG/SacY family of transcriptional antiterminators to adapt its metabolism during host colonization. In this report, we investigated the role of the BglG/SacY family antiterminator NagY in the regulation of the nagY-nagE operon in presence of N-acetylglucosamine, with nagE encoding a transporter of this carbohydrate, as well as the expression of the virulence factor HylA. We showed that this last protein is involved in biofilm formation and glycosaminoglycans degradation that are important features in bacterial infection, confirmed in the Galleria mellonella model. In order to elucidate the evolution of these actors, we performed phylogenomic analyses on E. faecalis and Enterococcaceae genomes, identified orthologous sequences of NagY, NagE, and HylA, and we report their taxonomic distribution. The study of the conservation of the upstream region of nagY and hylA genes showed that the molecular mechanism of NagY regulation involves ribonucleic antiterminator sequence overlapping a rho-independent terminator, suggesting a regulation conforming to the canonical model of BglG/SacY family antiterminators. In the perspective of opportunism understanding, we offer new insights into the mechanism of host sensing thanks to the NagY antiterminator and its targets expression.

3.
RNA Biol ; 17(6): 794-804, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32070211

RESUMO

The control of mRNA turnover is essential in bacteria to allow rapid adaptation, especially in opportunistic pathogen like Enterococcus faecalis. This mechanism involves RNase and DEAD-box helicases that are key elements in RNA processing and their associations form the degradosome with accessory proteins. In this study, we investigated the function of four RNases (J1, J2, Y and III) and three DEAD-box helicases (CshA, CshB, CshC) present in most Enterococci. The interactions of all these RNA metabolism actors were investigated in vitro, and the results are in accordance with a degradosome structure close to the one of Bacillus subtilis. At the physiological level, we showed that RNase J1 is essential, whereas RNases J2 and III have a role in cold, oxidative and bile salts stress response, and RNase Y in general fitness. Furthermore, RNases J2, Y and III mutants are affected in virulence in the Galleria mellonella infection model. Concerning DEAD-box helicases, all of them are involved in cold shock response. Since the ΔcshA mutant was the most stress impacted strain, we studied this DEAD-box helicase CshA in more detail. This showed that CshA autoregulates its own expression by binding to its mRNA 5'Unstranslated Region. Interestingly, CshC is also involved in the expression control of CshA by a hitherto unprecedented mechanism.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , RNA/metabolismo , Regiões 5' não Traduzidas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Enterococcus faecalis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Mutação , RNA/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo , Virulência
4.
Arch Microbiol ; 202(2): 233-246, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31599337

RESUMO

Enterococcus faecalis has to cope with major stress conditions during colonization. To understand the effects of stress encountered during infection, the present study assessed the transcriptomic response of the bacteria facing exposure to serum, urine, bile salts, acid pH, or oxidative stress. Compared to non-stressed culture, 30% of the E. faecalis genes were differentially expressed. The transcriptome analysis reveals common but also specific responses, depending on stresses encountered: thus, urine exposure has the most important impact, and the highest number of genes with modified expression is involved in transport and metabolism. The results also pinpoint many stress-related sRNA or intergenic regions not yet characterized. This study identified the general stress stimulon related to infection: when the commensal bacterium initiates its response to stress related to infection, it increases its ability to survive to rough conditions for colonization, rather than promoting expression of virulence factors, and becomes this opportunistic pathogen that thrives in hospital settings.


Assuntos
Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Estresse Fisiológico/fisiologia , Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Perfilação da Expressão Gênica , Humanos , Estresse Oxidativo , Transcriptoma/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...