Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 16912, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037308

RESUMO

Blocking the interaction between cell-surface receptors and their ligands is a proven therapeutic strategy. Adhesion G protein-coupled receptors (aGPCRs) are key cell-surface receptors that regulate numerous pathophysiological processes, and their large extracellular regions (ECRs) mediate ligand binding and function. The aGPCR GPR56/ADGRG1 regulates central nervous system myelination and melanoma progression by interacting with its ligand, tissue transglutaminase 2 (TG2), but the molecular basis for this interaction is largely undefined. Here, we show that the C-terminal portion of TG2 directly interacted with the GPR56 ECR with high-nanomolar affinity, and used site-directed mutagenesis to identify a patch of conserved residues on the pentraxin/laminin-neurexin-sex-hormone-binding-globulin-like (PLL) domain of GPR56 as the TG2 binding site. Importantly, we also show that the GPR56-TG2 interaction was blocked by previously-reported synthetic proteins, termed monobodies, that bind the GPR56 ECR in a domain- and species-specific manner. This work provides unique tools to modulate aGPCR-ligand binding and establishes a foundation for the development of aGPCR-targeted therapeutics.


Assuntos
Adesão Celular/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transglutaminases/metabolismo , Animais , Sítios de Ligação/fisiologia , Células Cultivadas , Células HEK293 , Humanos , Insetos , Ligantes , Mamíferos/metabolismo , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Proteína 2 Glutamina gama-Glutamiltransferase , Transdução de Sinais/fisiologia
2.
iScience ; 3: 264-278, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30428326

RESUMO

Adhesion G-protein-coupled receptors (aGPCRs) play critical roles in diverse cellular processes in neurobiology, development, immunity, and numerous diseases. The lack of molecular understanding of their activation mechanisms, especially with regard to the transmembrane domains, hampers further studies to facilitate aGPCR-targeted drug development. Latrophilin-1/ADGRL1 is a model aGPCR that regulates synapse formation and embryogenesis, and its mutations are associated with cancer and attention-deficit/hyperactivity disorder. Here, we established functional assays to monitor latrophilin-1 function and showed the activation of latrophilin-1 by its endogenous agonist peptide. Via a comprehensive mutagenesis screen, we identified transmembrane domain residues essential for latrophilin-1 basal activity and for agonist peptide response. Strikingly, a cancer-associated mutation exhibited increased basal activity and failed to rescue the embryonic developmental phenotype in transgenic worms. These results provide a mechanistic foundation for future aGPCR-targeted drug design.

3.
IUCrJ ; 5(Pt 2): 166-171, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765606

RESUMO

Determining macromolecular structures from X-ray data with resolution worse than 3 Šremains a challenge. Even if a related starting model is available, its incompleteness or its bias together with a low observation-to-parameter ratio can render the process unsuccessful or very time-consuming. Yet, many biologically important macromolecules, especially large macromolecular assemblies, membrane proteins and receptors, tend to provide crystals that diffract to low resolution. A new algorithm to tackle this problem is presented that uses a multivariate function to simultaneously exploit information from both an initial partial model and low-resolution single-wavelength anomalous diffraction data. The new approach has been used for six challenging structure determinations, including the crystal structures of membrane proteins and macromolecular complexes that have evaded experts using other methods, and large structures from a 3.0 Šresolution F1-ATPase data set and a 4.5 Šresolution SecYEG-SecA complex data set. All of the models were automatically built by the method to Rfree values of between 28.9 and 39.9% and were free from the initial model bias.

4.
Proc Natl Acad Sci U S A ; 114(38): 10095-10100, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874577

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) play critical roles in diverse biological processes, including neurodevelopment and cancer progression. aGPCRs are characterized by large and diverse extracellular regions (ECRs) that are autoproteolytically cleaved from their membrane-embedded signaling domains. Although ECRs regulate receptor function, it is not clear whether ECRs play a direct regulatory role in G-protein signaling or simply serve as a protective cap for the activating "Stachel" sequence. Here, we present a mechanistic analysis of ECR-mediated regulation of GPR56/ADGRG1, an aGPCR with two domains [pentraxin and laminin/neurexin/sex hormonebinding globulin-like (PLL) and G protein-coupled receptor autoproteolysis-inducing (GAIN)] in its ECR. We generated a panel of high-affinity monobodies directed to each of these domains, from which we identified activators and inhibitors of GPR56-mediated signaling. Surprisingly, these synthetic ligands modulated signaling of a GPR56 mutant defective in autoproteolysis and hence, in Stachel peptide exposure. These results provide compelling support for a ligand-induced and ECR-mediated mechanism that regulates aGPCR signaling in a transient and reversible manner, which occurs in addition to the Stachel-mediated activation.


Assuntos
Peptídeos/química , Proteólise , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Animais , Linhagem Celular , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Domínios Proteicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Spodoptera
5.
Protein Sci ; 26(5): 910-924, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28249355

RESUMO

Synthetic binding proteins are constructed using nonantibody molecular scaffolds. Over the last two decades, in-depth structural and functional analyses of synthetic binding proteins have improved combinatorial library designs and selection strategies, which have resulted in potent platforms that consistently generate binding proteins to diverse targets with affinity and specificity that rival those of antibodies. Favorable attributes of synthetic binding proteins, such as small size, freedom from disulfide bond formation and ease of making fusion proteins, have enabled their unique applications in protein science, cell biology and beyond. Here, we review recent studies that illustrate how synthetic binding proteins are powerful probes that can directly link structure and function, often leading to new mechanistic insights. We propose that synthetic proteins will become powerful standard tools in diverse areas of protein science, biotechnology and medicine.


Assuntos
Engenharia de Proteínas/métodos , Anticorpos de Domínio Único/química , Animais , Humanos , Anticorpos de Domínio Único/genética
6.
Neuron ; 91(6): 1292-1304, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657451

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) play critical roles in diverse neurobiological processes including brain development, synaptogenesis, and myelination. aGPCRs have large alternatively spliced extracellular regions (ECRs) that likely mediate intercellular signaling; however, the precise roles of ECRs remain unclear. The aGPCR GPR56/ADGRG1 regulates both oligodendrocyte and cortical development. Accordingly, human GPR56 mutations cause myelination defects and brain malformations. Here, we determined the crystal structure of the GPR56 ECR, the first structure of any complete aGPCR ECR, in complex with an inverse-agonist monobody, revealing a GPCR-Autoproteolysis-Inducing domain and a previously unidentified domain that we term Pentraxin/Laminin/neurexin/sex-hormone-binding-globulin-Like (PLL). Strikingly, PLL domain deletion caused increased signaling and characterizes a GPR56 splice variant. Finally, we show that an evolutionarily conserved residue in the PLL domain is critical for oligodendrocyte development in vivo. Thus, our results suggest that the GPR56 ECR has unique and multifaceted regulatory functions, providing novel insights into aGPCR roles in neurobiology.


Assuntos
Processamento Alternativo , Domínio de Fibronectina Tipo III , Oligodendroglia/fisiologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Processos de Crescimento Celular/fisiologia , Humanos , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/genética
7.
Structure ; 23(9): 1678-1691, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26235030

RESUMO

Fibronectin leucine-rich repeat transmembrane proteins (FLRTs) are cell-adhesion molecules with emerging functions in cortical development and synapse formation. Their extracellular regions interact with latrophilins (LPHNs) to mediate synapse development, and with Uncoordinated-5 (UNC5)/netrin receptors to control the migration of neurons in the developing cortex. Here, we present the crystal structures of FLRT3 in isolation and in complex with LPHN3. The LPHN3/FLRT3 structure reveals that LPHN3 binds to FLRT3 at a site distinct from UNC5. Structure-based mutations specifically disrupt LPHN3/FLRT3 binding, but do not disturb their interactions with other proteins or their cell-membrane localization. Thus, they can be used as molecular tools to dissect the functions of FLRTs and LPHNs in vivo. Our results suggest that UNC5 and LPHN3 can simultaneously bind to FLRT3, forming a trimeric complex, and that FLRT3 may form transsynaptic complexes with both LPHN3 and UNC5. These findings provide molecular insights for understanding the role of cell-adhesion proteins in synapse function.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Sítios de Ligação , Adesão Celular , Cristalografia por Raios X , Células HEK293 , Humanos , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Receptores de Netrina , Multimerização Proteica , Receptores de Superfície Celular/química , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...