Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 62(7): 1327-1338, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549258

RESUMO

OBJECTIVES: Primidone is an anticonvulsive drug used in the treatment of epilepsy and essential tremor. It offers beneficial effects in controlling seizures, but its usage is also associated with possible side effects. To ensure optimal therapy, it is crucial to measure its concentration through accurate quantification methods. Therefore, our main goal was to develop and validate a new reference measurement procedure (RMP) for accurately measuring primidone levels in human serum and plasma. METHODS: In our study, we focused on the separation of primidone from both known and unknown interferences using a C18 column. To achieve accurate sample preparation, we developed a protocol involving protein precipitation followed by a high dilution step. The validation of the assay and determination of measurement uncertainty were carried out following guidelines from organizations such as the Clinical and Laboratory Standards Institute, the International Conference on Harmonization, and the Guide to the Expression of Uncertainty in Measurement. These rigorous validation processes ensure the reliability and accuracy of our method for quantifying primidone levels in human serum and plasma samples. RESULTS: The RMP was shown to be highly selective and specific, with no evidence of matrix interference. It can be used to quantify primidone in the range of 0.150-30.0 µg/mL. Intermediate precision was less than 4.0 %, and repeatability CV ranged from 1.0 to 3.3 % across all concentration levels. The relative mean bias ranged from 0.1 to 3.9 % for native serum levels, and from -2.6 to 2.8 % for lithium-heparin plasma levels. The measurement uncertainties for single measurements and target value assignment were 1.5-4.1 % and 0.9-1.0 %, respectively. CONCLUSIONS: In this study, we introduce an innovative LC-MS/MS-based candidate RMP specifically designed for primidone in human serum and plasma. Our RMP offers a traceable platform, facilitating the standardization of routine assays and enabling the evaluation of clinically relevant samples. With this novel approach, we aim to enhance the accuracy and reliability of primidone measurements, ultimately benefiting the field of clinical research and patient care.


Assuntos
Primidona , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Primidona/sangue , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Padrões de Referência , Reprodutibilidade dos Testes , Técnicas de Diluição do Indicador , Limite de Detecção , Anticonvulsivantes/sangue , Espectrometria de Massa com Cromatografia Líquida
2.
Clin Chem Lab Med ; 62(7): 1314-1326, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38407268

RESUMO

OBJECTIVES: Phenobarbital serves as an antiepileptic drug (AED) and finds application in the treatment of epilepsy either as monotherapy or adjunctive therapy. This drug exhibits various pharmacodynamic properties that account for its beneficial effects as well as potential side effects. Accurate measurement of its concentration is critical for optimizing AED therapy through appropriate dose adjustments. Therefore, our objective was to develop and validate a new reference measurement procedure (RMP) for the accurate quantification of phenobarbital levels in human serum and plasma. METHODS: A sample preparation protocol based on protein precipitation followed by a high dilution step was established in combination with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using a C8 column to separate target analytes from known and unknown interferences. Assay validation and determination of measurement uncertainty were performed based on current guidelines. Selectivity and Specificity were assessed using spiked serum and plasma samples; to investigate possible matrix effects (MEs) a post-column infusion experiment and a comparison of standard line slopes was performed. Precision and accuracy were determined within a multiday precision experiment. RESULTS: The RMP was shown to be highly selective and specific, with no evidence of matrix interferences. It can be used to quantify phenobarbital in the range of 1.92 to 72.0 µg/mL. Intermediate precision was less than 3.2 %, and repeatability coefficient of variation (CV) ranged from 1.3 to 2.0 % across all concentration levels. The relative mean bias ranged from -3.0 to -0.7 % for native serum levels, and from -2.8 to 0.8 % for Li-heparin plasma levels. The measurement uncertainties (k=1) for single measurements and target value assignment were 1.9 to 3.3 % and 0.9 to 1.6 %, respectively. CONCLUSIONS: A novel LC-MS/MS-based candidate RMP for the quantification of phenobarbital in human serum and plasma is presented which can be used for the standardization of routine assays and the evaluation of clinically relevant samples.


Assuntos
Fenobarbital , Espectrometria de Massas em Tandem , Humanos , Fenobarbital/sangue , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Anticonvulsivantes/sangue , Padrões de Referência , Análise Química do Sangue/métodos , Análise Química do Sangue/normas , Técnicas de Diluição do Indicador , Espectrometria de Massa com Cromatografia Líquida
3.
Clin Chem Lab Med ; 62(7): 1288-1300, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38105272

RESUMO

OBJECTIVES: To describe and validate an isotope dilution-liquid chromatograph-tandem mass spectrometry (ID-LC-MS/MS) based reference measurement procedure (RMP) for zonisamide to accurately measure serum and plasma concentrations. METHODS: Quantitative nuclear magnetic resonance (qNMR) spectroscopy was employed to determine the absolute content of the reference material used in order to establish traceability to SI units. Separation of zonisamide from known or unknown interferences was performed on a C8 column. For sample preparation a protocol based on protein precipitation in combination with a high dilution step was established. Assay validation and determination of measurement uncertainty were performed based on guidelines from the Clinical and Laboratory Standards Institute, the International Conference on Harmonization, and the Guide to the expression of uncertainty in measurement. RESULTS: The RMP was proven to be highly selective and specific with no evidence of a matrix effect, allowing for quantification of zonisamide within the range of 1.50-60.0 µg/mL. Intermediate precision was <1.4 % and repeatability CV ranged from 0.7 to 1.2 % over all concentration levels. The relative mean bias ranged from 0.0 to 0.8 % for native serum levels and from 0.2 to 2.0 % for Li-heparin plasma levels. The measurement uncertainties for single measurements and target value assignment ranged from 1.1 to 1.4 % and 0.8-1.0 %, respectively. CONCLUSIONS: We present a novel LC-MS/MS-based candidate RMP for zonisamide in human serum and plasma which provides a traceable and reliable platform for the standardization of routine assays and evaluation of clinically relevant samples.


Assuntos
Isoxazóis , Espectrometria de Massas em Tandem , Zonisamida , Humanos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Zonisamida/sangue , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Isoxazóis/sangue , Padrões de Referência , Técnicas de Diluição do Indicador , Análise Química do Sangue/métodos , Análise Química do Sangue/normas , Espectrometria de Massa com Cromatografia Líquida
4.
Clin Chem Lab Med ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38095314

RESUMO

OBJECTIVES: An isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure (RMP) was developed and validated to accurately measure serum and plasma concentrations of carbamazepine. METHODS: Quantitative nuclear magnetic resonance (qNMR) spectroscopy was used to determine the absolute content of the reference material, ensuring its traceability to SI units. The separation of carbamazepine from potential interferences, whether known or unknown, was achieved using a C18 column. A protein precipitation protocol followed by a high dilution step was established for sample preparation. Assay validation and determination of measurement uncertainty were performed in accordance with the guidelines of the Clinical and Laboratory Standards Institute, the International Conference on Harmonization (ICH), and the Guide to the Expression of Uncertainty in Measurement (GUM). In order to demonstrate equivalence to the already existing RMP a method comparison study was performed. RESULTS: The RMP was proven to be highly selective and specific with no evidence of a matrix effect, allowing for quantification of carbamazepine within the range of 0.800-18.0 µg/mL. Intermediate precision and repeatability (n=60 measurements) was found to be <1.6 % and <1.3 % over all concentration levels and independent from the matrix. The relative mean bias ranged from -0.1 to 0.6 % for native serum and from -0.3 to -0.1 % for Li-heparin plasma levels. The measurement uncertainties for single measurements and target value assignment were found to be <1.8 % and <1.3 %, respectively. Method comparison showed a good agreement between the Joint Committee of Traceability in Laboratory Medicine (JCTLM) listed RMP and the candidate RMP resulting in a Passing-Bablok regression equation with a slope of 1.01 and an intercept of -0.01. The bias in the patient cohort was found to be 0.9 %. CONCLUSIONS: We present a novel LC-MS/MS-based candidate RMP for carbamazepine in human serum and plasma which provides a traceable and reliable platform for the standardization of routine assays and evaluation of clinically relevant samples.

5.
Clin Chem Lab Med ; 61(11): 1942-1954, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37466369

RESUMO

OBJECTIVES: Topiramate is an antiepileptic drug (AED) used for the monotherapy or adjunctive treatment of epilepsy and for the prophylaxis of migraine. It has several pharmacodynamic properties that contribute to both its clinically useful properties and observed adverse effects. Accurate measurement of its concentration is therefore essential for dose adjustment/optimisation of AED therapy. Our aim was to develop and validate a novel reference measurement procedure (RMP) for the quantification of topiramate in human serum and plasma. METHODS: An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) method in combination with a protein-precipitation-based sample preparation allows for quantification of topiramate in human serum and plasma. To assure traceability to SI units, quantitative nuclear magnetic resonance (qNMR) was applied to characterize the reference material used as primary calibrator for this RMP. Matrix effects were determined by performing a post-column infusion experiment and comparing standard line slopes. Accuracy and precision was evaluated performing an extensive five day precision experiment and measurement uncertainty was evaluated according Guide to the Expression of Uncertainty in Measurement (GUM). RESULTS: The method enabled topiramate quantification within the range of 1.20-36.0 µg/mL without interference from structurally related compounds and no evidence of a matrix effect. Intermediate precision was ≤3.2 % and repeatability was 1.4-2.5 % across all concentration levels. The relative mean bias was -0.3 to 3.5 %. Expanded measurement uncertainties for target value assignment (n=6) were found to be ≤2.9 % (k=2) independent of the concentration level and the nature of the sample. CONCLUSIONS: In human serum and plasma, the RMP demonstrated high analytical performance for topiramate quantification and fulfilled the requirements on measurement uncertainty. Traceability to SI units was established by qNMR content determination of the topiramate, which was used for direct calibration of the RMP. This RMP is, therefore, fit for purpose for routine assay standardization and clinical sample evaluation.


Assuntos
Plasma , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Topiramato , Espectrometria de Massas em Tandem/métodos , Técnicas de Diluição do Indicador , Anticonvulsivantes , Isótopos , Padrões de Referência
6.
Clin Chem Lab Med ; 61(11): 1967-1977, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37011038

RESUMO

OBJECTIVES: To develop an isotope dilution-liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based candidate reference measurement procedure (RMP) for levetiracetam quantification in human serum and plasma. METHODS: Quantitative nuclear magnetic resonance spectroscopy (qNMR) was used to characterize the RMP material to ensure traceability to SI units. To quantify levetiracetam, an LC-MS/MS method was optimized using a C8 column for chromatographic separation following protein-precipitation-based sample preparation. Spiked matrix samples of serum and plasma were used to test selectivity and specificity. Matrix effects were determined by performing a post-column infusion experiment and comparing standard line slopes. Precision and accuracy were evaluated over 5 days. Measurement uncertainty was evaluated according to the Guide to the Expression of Uncertainty in Measurement (GUM). RESULTS: The RMP was proven to be highly selective and specific with no evidence of a matrix effect, allowing for quantification of levetiracetam within the range of 1.53-90.0 µg/mL. Intermediate precision was <2.2% and repeatability was 1.1-1.7% across all concentrations. The relative mean bias ranged from -2.5% to -0.3% across all levels and matrices within the measuring range. Diluted samples were found with a mean bias ranging from -0.1 to 2.9%. The predefined acceptance criterion for measurement uncertainty was met and determined for individual measurements independently of the concentration level and sample type to be ≤4.0% (k=2). CONCLUSIONS: We present a novel LC-MS/MS)-based candidate RMP for levetiracetam in human serum and plasma. Its expanded measurement uncertainty of ≤4.0% meets the clinical needs in levetiracetam monitoring. Utilizing qNMR to characterize levetiracetam reference materials allowed metrological traceability to SI units.


Assuntos
Isótopos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Levetiracetam , Reprodutibilidade dos Testes , Técnicas de Diluição do Indicador , Padrões de Referência
7.
Clin Chem Lab Med ; 61(11): 1930-1941, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36785916

RESUMO

OBJECTIVES: We developed an isotope dilution (ID)-liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based candidate reference measurement procedure (RMP) for lamotrigine in human serum and plasma, using quantitative nuclear magnetic resonance-characterized reference standards to ensure traceability to the International System of Units. METHODS: A sample preparation protocol based on protein precipitation combined with LC-MS/MS analysis using a C18 column for chromatographic separation was established for the quantification of lamotrigine in human serum and plasma. Assay validation was performed according to current guidelines. Spiked serum and plasma samples were used to assess selectivity and specificity; a post-column infusion experiment and comparison of standard line slopes were performed to ascertain possible matrix effects. Precision and accuracy were determined in a 5 days validation experiment. Measurement uncertainty was determined per the Guide to the Expression of Uncertainty in Measurement. RESULTS: The method allowed the quantification of lamotrigine in serum and plasma in a range of 0.600-24.0 µg/mL without any observable matrix effects. The relative mean bias (n=6) ranged from 1.7 to 3.7%; intermediate precision, including variances in between-day, -calibration, and -injection, was ≤2.4%, independent of the level and matrix. Total measurement uncertainty for a single measurement was ≤2.6%; expanded uncertainty was ≤5.2% (coverage factor k=2). CONCLUSIONS: This candidate RMP based on ID-LC-MS/MS provides a traceable and reliable platform for the standardization of routine assays and the evaluation of clinical samples.


Assuntos
Anticonvulsivantes , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Lamotrigina , Espectrometria de Massas em Tandem/métodos , Isótopos , Padrões de Referência
8.
Clin Chem Lab Med ; 61(11): 1955-1966, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36689915

RESUMO

OBJECTIVES: To describe and validate a reference measurement procedure (RMP) for gabapentin, employing quantitative nuclear magnetic resonance (qNMR) spectroscopy to determine the absolute content of the standard materials in combination with isotope dilution-liquid chromatograph-tandem mass spectrometry (ID-LC-MS/MS) to accurately measure serum and plasma concentrations. METHODS: A sample preparation protocol based on protein precipitation in combination with LC-MS/MS analysis using a C8 column for chromatographic separation was established for the quantification of gabapentin. Assay validation and determination of measurement uncertainty were performed according to guidance from the Clinical and Laboratory Standards Institute, the International Conference on Harmonization, and the Guide to the expression of uncertainty in measurement. ID-LC-MS/MS parameters evaluated included selectivity, specificity, matrix effects, precision and accuracy, inter-laboratory equivalence, and uncertainty of measurement. RESULTS: The use of qNMR provided traceability to International System (SI) units. The chromatographic assay was highly selective, allowing baseline separation of gabapentin and the gabapentin-lactam impurity, without observable matrix effects. Variability between injections, preparations, calibrations, and days (intermediate precision) was <2.3%, independent of the matrix, while the coefficient of variation for repeatability was 0.9-2.0% across all concentration levels. The relative mean bias ranged from -0.8-1.0% for serum and plasma samples. Passing-Bablok regression analysis indicated very good inter-laboratory agreement; the slope was 1.00 (95% confidence interval [CI] 0.98 to 1.03) and the intercept was -0.05 (95% CI -0.14 to 0.03). Pearson's correlation coefficient was ≥0.996. Expanded measurement uncertainties for single measurements were found to be ≤5.0% (k=2). CONCLUSIONS: This analytical protocol for gabapentin, utilizing traceable and selective qNMR and ID-LC-MS/MS techniques, allows for the standardization of routine tests and the reliable evaluation of clinical samples.


Assuntos
Plasma , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Gabapentina , Espectrometria de Massas em Tandem/métodos , Técnicas de Diluição do Indicador , Isótopos , Padrões de Referência
9.
J Fungi (Basel) ; 7(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066643

RESUMO

Trichoderma atroviride is a mycoparasitic fungus used as biological control agent against fungal plant pathogens. The recognition and appropriate morphogenetic responses to prey-derived signals are essential for successful mycoparasitism. We established microcolony confrontation assays using T. atroviride strains expressing cell division cycle 42 (Cdc42) and Ras-related C3 botulinum toxin substrate 1 (Rac1) interactive binding (CRIB) reporters to analyse morphogenetic changes and the dynamic displacement of localized GTPase activity during polarized tip growth. Microscopic analyses showed that Trichoderma experiences significant polarity stress when approaching its fungal preys. The perception of prey-derived signals is integrated via the guanosine triphosphatase (GTPase) and mitogen-activated protein kinase (MAPK) signalling network, and deletion of the MAP kinases Trichoderma MAPK 1 (Tmk1) and Tmk3 affected T. atroviride tip polarization, chemotropic growth, and contact-induced morphogenesis so severely that the establishment of mycoparasitism was highly inefficient to impossible. The responses varied depending on the prey species and the interaction stage, reflecting the high selectivity of the signalling process. Our data suggest that Tmk3 affects the polarity-stress adaptation process especially during the pre-contact phase, whereas Tmk1 regulates contact-induced morphogenesis at the early-contact phase. Neither Tmk1 nor Tmk3 loss-of-function could be fully compensated within the GTPase/MAPK signalling network underscoring the crucial importance of a sensitive polarized tip growth apparatus for successful mycoparasitism.

10.
Ther Drug Monit ; 43(2): 150-200, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711005

RESUMO

ABSTRACT: When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.


Assuntos
Monitoramento de Medicamentos , Imunossupressores/administração & dosagem , Ácido Micofenólico/administração & dosagem , Transplante de Órgãos , Área Sob a Curva , Consenso , Rejeição de Enxerto/prevenção & controle , Humanos
11.
Clin Biochem ; 82: 2-11, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32188572

RESUMO

Tandem mass spectrometry - especially in combination with liquid chromatography (LC-MS/MS) - is applied in a multitude of important diagnostic niches of laboratory medicine. It is unquestioned in its routine use and is often unreplaceable by alternative technologies. This overview illustrates the development in the past decade (2009-2019) and intends to provide insight into the current standing and future directions of the field. The instrumentation matured significantly, the applications are well understood, and the in vitro diagnostics (IVD) industry is shaping the market by providing assay kits, certified instruments, and the first laboratory automated LC-MS/MS instruments as an analytical core. In many settings the application of LC-MS/MS is still burdensome with locally lab developed test (LDT) designs relying on highly specialized staff. The current routine applications cover a wide range of analytes in therapeutic drug monitoring, endocrinology including newborn screening, and toxicology. The tasks that remain to be mastered are, for example, the quantification of proteins by means of LC-MS/MS and the transition from targeted to untargeted omics approaches relying on pattern recognition/pattern discrimination as a key technology for the establishment of diagnostic decisions.


Assuntos
Cromatografia Líquida/tendências , Testes Diagnósticos de Rotina/tendências , Espectrometria de Massas em Tandem/tendências , Automação Laboratorial/métodos , Monitoramento de Medicamentos/métodos , Endocrinologia/métodos , Previsões , Humanos , Toxicologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...