Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 10(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545346

RESUMO

The nutritionally imbalanced poor-quality diet feeding is the major constraint of dairy production in tropical regions. Hence, alternative high-quality roughage-based diets are required to improve milk yield and reduce methane emission (CH4). Thus, we tested the effects of feeding natural pasture hay, improved forage grass hays (Napier and Brachiaria Hybrid), and treated crop residues (Eragrostis tef straw) on nutrient digestibility, milk yield, nitrogen balance, and methane emission. The eight lactating Fogera cows selected for the experiment were assigned randomly to a 4 × 4 Latin square design. Cows were housed in well-ventilated individual pens and fed a total mixed ration (TMR) comprising 70% roughage and 30% concentrate. The four roughage-based basal dietary treatments supplemented with formulated concentrate were: Control (natural pasture hay (NPH)); treated teff straw silage (TTS); Napier grass hay (NGH); and Brachiaria hybrid grass hay (BhH). Compared with the control diet, the daily milk yield increased (p < 0.01) by 31.9%, 52.9%, and 71.6% with TTS, NGH, and BhH diets, respectively. Cows fed BhH had the highest dry matter intake (8.84 kg/d), followed by NGH (8.10 kg/d) and TTS (7.71 kg/d); all of these intakes were greater (p = 0.01) than that of NPH (6.21 kg/d). Nitrogen digestibility increased (p < 0.01) from the NPH diet to TTS (by 27.7%), NGH (21.7%), and BhH (39.5%). The concentration of ruminal ammonia nitrogen was higher for cows fed NGH than other diets (p = 0.01) and positively correlated with plasma urea nitrogen concentration (R² = 0.45). Feeding TTS, NGH, and BhH hay as a basal diet changed the nitrogen excretion pathway from urine to feces, which can help protect against environmental pollution. Estimated methane yields per dry matter intake and milk yield were decreased in dairy cows fed BhH, NGH, and TTS diets when compared to cows fed an NPH diet (p < 0.05). In conclusion, feeding of TTS, NGH, and BhH roughages as a basal diet to lactating dairy cows in tropical regions improved nutrient intake and digestibility, milk yield, nitrogen utilization efficiency, and reduced enteric methane emission.

2.
Biochemistry ; 50(15): 3261-71, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21381755

RESUMO

Inorganic polyphosphate (polyP) plays a number of critical roles in bacterial persistence, stress, and virulence. PolyP intracellular metabolism is regulated by the polyphosphate kinase (PPK) protein families, and inhibition of PPK activity is a potential approach to disrupting polyP-dependent processes in pathogenic organisms. Here, we biochemically characterized Mycobacterium tuberculosis (MTB) PPK2 and developed DNA-based aptamers that inhibit the enzyme's catalytic activities. MTB PPK2 catalyzed polyP-dependent phosphorylation of ADP to ATP at a rate 838 times higher than the rate of polyP synthesis. Gel filtration chromatography suggested MTB PPK2 to be an octamer. DNA aptamers were isolated against MTB PPK2. Circular dichroism revealed that aptamers grouped into two distinct classes of secondary structure; G-quadruplex and non-G-quadruplex. A selected G-quadruplex aptamer was highly selective for binding to MTB PPK2 with a dissociation constant of 870 nM as determined by isothermal titration calorimetry. The binding between MTB PPK2 and the aptamer was exothermic yet primarily driven by entropy. This G-quadruplex aptamer inhibited MTB PPK2 with an IC(50) of 40 nM and exhibited noncompetitive inhibition kinetics. Mutational mechanistic analysis revealed an aptamer G-quadruplex motif is critical for enzyme inhibition. The aptamer was also tested against Vibrio cholerae PPK2, where it showed an IC(50) of 105 nM and insignificant inhibition against more distantly related Laribacter hongkongensis PPK2.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Clonagem Molecular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Quadruplex G , Cinética , Modelos Moleculares , Mutação , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Conformação Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...