Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathology ; 56(3): 325-333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195375

RESUMO

The frequency of MET and HER2 amplification being detected by next generation sequencing (NGS) is increasing due to NGS being increasingly adopted for molecular profiling of cancers. However, the accuracy of NGS in detecting these gene amplifications remains uncertain due to conflicting reports in the scientific literature. We studied the accuracy of an amplicon-based large panel NGS assay in detecting MET and HER2 amplification in lung and breast cancers, respectively, by comparing it against conventional testing methods. Amongst 48 lung cancers, four of five cancers that were MET amplified on fluorescence in situ hybridisation (FISH) were classified as amplified on NGS while 42 of the remaining 43 non-amplified cancers were classified as non-amplified on NGS, giving a sensitivity of 80%, specificity of 97.7% and overall concordance of 95.8%. Of the 46 breast cancers tested, only six of the nine cancers that were HER2-positive on immunohistochemistry (IHC)/FISH were HER2-positive on NGS, while all the remaining HER2-negative cases were negative on NGS, giving a sensitivity of 66.7%, specificity of 100% and overall concordance of 93.5%. All the false-negative cases had low level gene amplification (MET:CEP7 or HER2:CEP17 FISH ratio of <3). The low sensitivity for HER2 amplification may be confounded by the small sample size and disproportionate number of cases with low level amplification. In summary, the NGS assay has good concordance with conventional testing methods but may be less sensitive in detecting low level gene amplification.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Amplificação de Genes , Pulmão/metabolismo
3.
Cancer Sci ; 112(1): 397-409, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33164299

RESUMO

Giant cells (GC) are a poorly understood subset of tumor cells that have been increasingly recognized as a potential contributor to tumor heterogeneity and treatment resistance. We aimed to characterize the biological and clinical significance of GC in angiosarcoma, an aggressive rare cancer of endothelial origin. Archival angiosarcoma samples were examined for the presence of GC and compared with clinicopathological as well as NanoString gene expression data. GC were examined in angiosarcoma cell lines MOLAS and ISOHAS using conventional and electron microscopy, single cell whole genome profiling, and other assays. In the cell lines, GC represented a rare population of mitotically active, non-senescent CD31+ cells, and shared similar genomic profiles with regular-sized cells, consistent with a malignant endothelial phenotype. GC remained viable and persisted in culture following exposure to paclitaxel and doxorubicin. In patient samples, GC were present in 24 of 58 (41.4%) cases. GC was correlated with poorer responses to chemotherapy (25.0% vs 73.3%, P = 0.0213) and independently contributed to worse overall survival outcomes (hazard ratio 2.20, 95% confidence interval 1.17-4.15, P = 0.0142). NanoString profiling revealed overexpression of genes, including COL11A1, STC1, and ERO1A, accompanied by upregulation of immune-related metabolic stress and metastasis/matrix remodeling pathways in GC-containing tumors. In conclusion, GC may contribute to chemoresistance and poor prognosis in angiosarcoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Células Gigantes/patologia , Hemangiossarcoma/patologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Transcriptoma
4.
Singapore Med J ; 59(3): 139-143, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28210747

RESUMO

INTRODUCTION: Sporadic colorectal cancers with BRAF mutations constitute two distinct subgroups of colorectal cancers. Recent studies have linked the presence of the BRAF mutation to a familial inheritance pattern. This was a proof-of-concept study that aimed to examine: (a) the extent of field change in sporadic colorectal cancers with BRAF mutation; and (b) the extent of resection margins required and the pattern of DNA mismatch repair protein loss in these tumours. METHODS: Eight microsatellite instability-high tumours with positive BRAF mutation from an existing histopathological database were selected for BRAF mutation and mismatch repair protein analysis. RESULTS: All the resection margins were negative for BRAF mutation. Three tumours had loss of MLH1 and PMS2 expressions, and five tumours had no protein loss. Six peritumoral tissues were negative and one was positive for BRAF mutation. CONCLUSION: The results suggest that any early field change effect is restricted to the immediate vicinity of the tumour and is not a pan-colonic phenomenon. Current guidelines on resection margins are adequate for BRAF mutation-positive colorectal cancers. Any suggestion of a hereditary link to these tumours is likely not related to germline BRAF gene mutations. The pattern of protein loss reinforces previous findings for the two subgroups of BRAF mutation-positive colorectal cancers.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Metástase Neoplásica , Proteínas Proto-Oncogênicas B-raf/genética , Feminino , Humanos , Masculino , Instabilidade de Microssatélites , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/secundário , Neoplasias Gástricas/patologia , Neoplasias Gástricas/secundário
5.
Sci Transl Med ; 9(378)2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28228601

RESUMO

Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, KDM6A (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of KDM6A mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in KDM6A-mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in KDM6A-null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that KDM6A-null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in KDM6A-null cell lines. EZH2 inhibition delayed tumor onset in KDM6A-null cells and caused regression of KDM6A-null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of KDM6A, which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Histona Desmetilases/metabolismo , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Transcrição Gênica , Neoplasias da Bexiga Urinária/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia
6.
Gut ; 65(12): 1960-1972, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26338826

RESUMO

BACKGROUND: GI stromal tumours (GISTs) are clinically heterogenous exhibiting varying degrees of disease aggressiveness in individual patients. OBJECTIVES: We sought to identify genetic alterations associated with high-risk GIST, explore their molecular consequences, and test their utility as prognostic markers. DESIGNS: Exome sequencing of 18 GISTs was performed (9 patients with high-risk/metastatic and 5 patients with low/intermediate-risk), corresponding to 11 primary and 7 metastatic tumours. Candidate alterations were validated by prevalence screening in an independent patient cohort (n=120). Functional consequences of SETD2 mutations were investigated in primary tissues and cell lines. Transcriptomic profiles for 8 GISTs (4 SETD2 mutated, 4 SETD2 wild type) and DNA methylation profiles for 22 GISTs (10 SETD2 mutated, 12 SETD2 wild type) were analysed. Statistical associations between molecular, clinicopathological factors, and relapse-free survival were determined. RESULTS: High-risk GISTs harboured increased numbers of somatic mutations compared with low-risk GISTs (25.2 mutations/high-risk cases vs 6.8 mutations/low-risk cases; two sample t test p=3.1×10-5). Somatic alterations in the SETD2 histone modifier gene occurred in 3 out of 9 high-risk/metastatic cases but no low/intermediate-risk cases. Prevalence screening identified additional SETD2 mutations in 7 out of 80 high-risk/metastatic cases but no low/intermediate-risk cases (n=29). Combined, the frequency of SETD2 mutations was 11.2% (10/89) and 0% (0/34) in high-risk and low-risk GISTs respectively. SETD2 mutant GISTs exhibited decreased H3K36me3 expression while SETD2 silencing promoted DNA damage in GIST-T1 cells. In gastric GISTs, SETD2 mutations were associated with overexpression of HOXC cluster genes and a DNA methylation signature of hypomethylated heterochromatin. Gastric GISTs with SETD2 mutations, or GISTs with hypomethylated heterochromatin, showed significantly shorter relapse-free survival on univariate analysis (log rank p=4.1×10-5). CONCLUSIONS: Our data suggest that SETD2 is a novel GIST tumour suppressor gene associated with disease progression. Assessing SETD2 genetic status and SETD2-associated epigenomic phenotypes may guide risk stratification and provide insights into mechanisms of GIST clinical aggressiveness.


Assuntos
Biomarcadores Tumorais/genética , Tumores do Estroma Gastrointestinal/genética , Histona-Lisina N-Metiltransferase/genética , Mutação de Sentido Incorreto , Estudos de Casos e Controles , Códon sem Sentido/genética , Metilação de DNA/genética , Exoma/genética , Tumores do Estroma Gastrointestinal/epidemiologia , Tumores do Estroma Gastrointestinal/patologia , Histonas/genética , Humanos , Mutação de Sentido Incorreto/genética , Invasividade Neoplásica , Fenótipo , Prevalência , Prognóstico , Índice de Gravidade de Doença , Singapura/epidemiologia
7.
Gut ; 64(5): 707-19, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25053715

RESUMO

OBJECTIVE: Gastric cancer (GC) is a deadly malignancy for which new therapeutic strategies are needed. Three transcription factors, KLF5, GATA4 and GATA6, have been previously reported to exhibit genomic amplification in GC. We sought to validate these findings, investigate how these factors function to promote GC, and identify potential treatment strategies for GCs harbouring these amplifications. DESIGN: KLF5, GATA4 and GATA6 copy number and gene expression was examined in multiple GC cohorts. Chromatin immunoprecipitation with DNA sequencing was used to identify KLF5/GATA4/GATA6 genomic binding sites in GC cell lines, and integrated with transcriptomics to highlight direct target genes. Phenotypical assays were conducted to assess the function of these factors in GC cell lines and xenografts in nude mice. RESULTS: KLF5, GATA4 and GATA6 amplifications were confirmed in independent GC cohorts. Although factor amplifications occurred in distinct sets of GCs, they exhibited significant mRNA coexpression in primary GCs, consistent with KLF5/GATA4/GATA6 cross-regulation. Chromatin immunoprecipitation with DNA sequencing revealed a large number of genomic sites co-occupied by KLF5 and GATA4/GATA6, primarily located at gene promoters and exhibiting higher binding strengths. KLF5 physically interacted with GATA factors, supporting KLF5/GATA4/GATA6 cooperative regulation on co-occupied genes. Depletion and overexpression of these factors, singly or in combination, reduced and promoted cancer proliferation, respectively, in vitro and in vivo. Among the KLF5/GATA4/GATA6 direct target genes relevant for cancer development, one target gene, HNF4α, was also required for GC proliferation and could be targeted by the antidiabetic drug metformin, revealing a therapeutic opportunity for KLF5/GATA4/GATA6 amplified GCs. CONCLUSIONS: KLF5/GATA4/GATA6 may promote GC development by engaging in mutual crosstalk, collaborating to maintain a pro-oncogenic transcriptional regulatory network in GC cells.


Assuntos
Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/genética , Regulação Neoplásica da Expressão Gênica/genética , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Gástricas/genética , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Fator de Transcrição GATA4/biossíntese , Fator de Transcrição GATA6/biossíntese , Perfilação da Expressão Gênica/métodos , Inativação Gênica , Predisposição Genética para Doença , Xenoenxertos , Humanos , Fatores de Transcrição Kruppel-Like/biossíntese , Camundongos Nus , Transplante de Neoplasias , Oncogenes/genética , Regiões Promotoras Genéticas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...