Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 22(1): 259, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986321

RESUMO

As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.

2.
Genetica ; 150(5): 289-297, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35913522

RESUMO

Although predicting the effects of variants near intron-exon boundaries is relatively straightforward, predicting the functional Exon Splicing Enhancers (ESEs) and the possible effects of variants within ESEs remains a challenge. Considering the essential role of CYP2D6/CYP2C19 genes in drug metabolism, we attempted to identify variants that are most likely to disrupt splicing through their effect on these ESEs. ESEs were predicted in these two genes using ESEfinder 3.0, incorporating a series of filters (increased threshold and evolutionary conservation). Finally, reported mutations were evaluated for their potential to disrupt splicing by affecting these ESEs. Initially, 169 and 243 ESEs were predicted for CYP2C19/CYP2D6, respectively. However, applying the filters, the number of predicted ESEs was reduced to 26 and 19 in CYP2C19/CYP2D6, respectively. Comparing prioritized predicted ESEs with known sequence variants in CYP2C19/CYP2D6 genes highlights 18 variations within conserved ESEs for each gene. We found good agreement in cases where such predictions could be compared to experimental evidence. In total, we prioritized a subset of mutational changes in CYP2C19/CYP2D6 genes that may affect the function of these genes and lead to altered drug responses. Clinical studies and functional analysis for investigating detailed functional consequences of the mentioned mutations and their phenotypic outcomes is mostly recommended.


Assuntos
Processamento Alternativo , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Éxons , Polimorfismo Genético
4.
Sci Rep ; 12(1): 2642, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173261

RESUMO

In this study, a microfluidic cantilever flow sensor was designed and manufactured to monitor liquid flow rate within the range of 100-1000 µl/min. System simulation was also performed to determine the influential optimal parameters and compare the results with experimental data. A flowmeter was constructed as a curved cantilever with dimensions of 6.9 × 0.5 × 0.6 mm3 and a microchannel carved with a CO2 laser inside the cantilever beam. The fabrication substance was Polydimethylsiloxane. Different flow rates were injected using a syringe pump to test the performance of the flowmeter. Vertical displacement of the cantilever was measured in each flowrate using a digital microscope. According to the results, the full-scale overall device accuracy was up to ± 1.39%, and the response time of the sensor was measured to be 6.3 s. The microchip sensitivity was 0.126 µm/(µl/min) in the range of measured flow rates. The sensor could also be utilized multiple times with an acceptable error value. The experimental data obtained by the constructed microchip had a linear trend (R2 = 0.995) and were of good consistency with simulation results. Furthermore, according to the experimental and the simulation data, the initially curved cantilever structure had a higher bending and sensitivity level than a perfectly straight cantilever construction.

5.
Cancer Cell Int ; 22(1): 14, 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35000604

RESUMO

Mucin-1 (MUC-1) is a transmembrane glycoprotein, which bears many similarities between dogs and humans. Since the existence of animal models is essential to understand the significant factors involved in breast cancer mechanisms, canine mammary tumors (CMTs) could be used as a spontaneously occurring tumor model for human studies. Accordingly, this review assessed the comparison of canine and human MUC-1 based on their diagnostic and therapeutic aspects and showed how comparative oncology approaches could provide insights into translating pre-clinical trials from human to veterinary oncology and vice versa which could benefit both humans and dogs.

6.
J Biol Eng ; 15(1): 20, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344421

RESUMO

Development of engineered non-pathogenic bacteria, capable of expressing anti-cancer proteins under tumor-specific conditions, is an ideal approach for selectively eradicating proliferating cancer cells. Herein, using an engineered hypoxia responding nirB promoter, we developed an engineered Escherichia coli BW25133 strain capable of expressing cardiac peptides and GFP signaling protein under hypoxic condition for spatiotemporal targeting of mice mammary tumors. Following determination of the in vitro cytotoxicity profile of the engineered bacteria, selective accumulation of bacteria in tumor microenvironment was studied 48 h after tail vein injection of 108 cfu bacteria in animals. For in vivo evaluation of antitumoral activities, mice with establishment mammary tumors received 3 consecutive intravenous injections of transformed bacteria with 4-day intervals and alterations in expression of tumor growth, invasion and angiogenesis specific biomarkers (Ki-67, VEGFR, CD31and MMP9 respectively), as well as fold changes in concentration of proinflammatory cytokines were examined at the end of the 24-day study period. Intravenously injected bacteria could selectively accumulate in tumor site and temporally express GFP and cardiac peptides in response to hypoxia, enhancing survival rate of tumor bearing mice, suppressing tumor growth rate and expression of MMP-9, VEGFR2, CD31 and Ki67 biomarkers. Applied engineered bacteria could also significantly reduce concentrations of IL-1ß, IL-6, GC-SF, IL-12 and TNF-α proinflammatory cytokines while increasing those of IL-10, IL-17A and INF-γ. Overall, administration of hypoxia-responding E. coli bacteria, carrying cardiac peptide expression construct could effectively suppress tumor growth, angiogenesis, invasion and metastasis and enhance overall survival of mice bearing mammary tumors.

7.
Exp Cell Res ; 405(2): 112685, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34090863

RESUMO

Tumor progression and metastasis, especially in invasive cancers (such as triple-negative breast cancer [TNBC]), depend on angiogenesis, in which vascular epithelial growth factor (VEGF)/vascular epithelial growth factor receptor [1] has a decisive role, followed by the metastatic spread of cancer cells. Although some studies have shown that anti-VEGFR2/VEGF monoclonal antibodies demonstrated favorable results in the clinic, this approach is not efficient, and further investigations are needed to improve the quality of cancer treatment. Besides, the increased expression of epithelial cell adhesion molecule (EpCAM) in various cancers, for instance, invasive breast cancer, contributes to angiogenesis, facilitating the migration of tumor cells to other parts of the body. Thus, the main goal of our study was to target either VEGFR2 or EpCAM as pivotal players in the progression of angiogenesis in breast cancer. Regarding cancer therapy, the production of bispecific antibodies is easier and more cost-effective compared to monoclonal antibodies, targeting more than one antigen or receptor; for this reason, we produced a recombinant antibody to target cells expressing EpCAM and VEGFR2 via a bispecific antibody to decrease the proliferation and metastasis of tumor cells. Following the cloning and expression of our desired anti-VEGFR2/EPCAM sequence in E. coli, the accuracy of the expression was confirmed by Western blot analysis, and its binding activities to VEGFR2 and EPCAM on MDA-MB-231 and MCF-7 cell lines were respectively indicated by flow cytometry. Then, its anti-proliferative potential was indicated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and apoptosis assay to evaluate inhibitory effects of the antibody on tumor cells. Subsequently, the data indicated that migration, invasion, and angiogenesis were inhibited in breast cancer cell lines via the bispecific antibody. Furthermore, cytokine analysis indicated that the bispecific antibody could moderate interleukin 8 (IL-8) and IL-6 as key mediators in angiogenesis progression in breast cancer. Thus, our bispecific antibody could be considered as a promising candidate tool to decrease angiogenesis in TNBC.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Biespecíficos/farmacologia , Molécula de Adesão da Célula Epitelial/imunologia , Neovascularização Patológica/tratamento farmacológico , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/efeitos dos fármacos , Humanos , Morfogênese/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...