Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17345, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478403

RESUMO

Doxorubicin and paclitaxel, two hydrophobic chemotherapeutic agents, are used in cancer therapies. Presence of hydrophobic patches and a flexible fold could probably make α-Lactalbumin a suitable carrier for hydrophobic drugs. In the present study, a variety of thermodynamic, spectroscopic, computational, and cellular techniques were applied to assess α-lactalbumin potential as a carrier for doxorubicin and paclitaxel. According to isothermal titration calorimetry data, the interaction between α-lactalbumin and doxorubicin or paclitaxel is spontaneous and the K (M-1) value for the interaction of α-lactalbumin and paclitaxel is higher than that for doxorubicin. Differential scanning calorimetry and anisotropy results indicated formation of α-lactalbumin complexes with doxorubicin or paclitaxel. Furthermore, molecular docking and dynamic studies revealed that TRPs are not involved in α-Lac's interaction with Doxorubicin while TRP 60 interacts with paclitaxel. Based on Pace analysis to determine protein thermal stability, doxorubicin and paclitaxel induced higher and lower thermal stability in α-lactalbumin, respectively. Besides, fluorescence lifetime measurements reflected that the interaction between α-lactalbumin with doxorubicin or paclitaxel was of static nature. Therefore, the authors hypothesized that α-lactalbumin could serve as a carrier for doxorubicin and paclitaxel by reducing cytotoxicity and apoptosis which was demonstrated during our in vitro cell studies.


Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Lactalbumina/química , Paclitaxel/química , Calorimetria/métodos , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Doxorrubicina/farmacocinética , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Polarização de Fluorescência , Humanos , Ligação de Hidrogênio , Lactalbumina/administração & dosagem , Lactalbumina/metabolismo , Simulação de Acoplamento Molecular , Paclitaxel/farmacocinética , Estabilidade Proteica , Termodinâmica
2.
J Mol Recognit ; 30(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28295743

RESUMO

Structural properties of carbohydrate surface binding sites (SBSs) were investigated with computational methods. Eighty-five SBSs of 44 enzymes in 119 Protein Data Bank (PDB) files were collected as a dataset. On the basis of SBSs shape, they were divided into 3 categories: flat surfaces, clefts, and cavities (types A, B, and C, respectively). Ligand varieties showed the correlation between shape of SBSs and ligands size. To reduce cut-off differences in each SBSs with different ligand size, molecular docking were performed. Molecular docking results were used to refine SBSs classification and binding sites cut-off. Docking results predicted putative ligands positions and displayed dependence of the ligands binding mode to the structural type of SBSs. Physicochemical properties of SBSs were calculated for all docking results with YASARA Structure. The results showed that all SBSs are hydrophilic, while their charges could vary and depended to ligand size and defined cut-off. Surface binding sites type B had highest average values of solvent accessible surface area. Analysis of interactions showed that hydrophobic interactions occur more than hydrogen bonds, which is related to the presence of aromatic residues and carbohydrates interactions.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Sítios de Ligação , Bases de Dados de Proteínas , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...