Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 45(45): 18018-18044, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27801448

RESUMO

This review deals with our long-range goal of determining why the Prussian blue pigments, typically either the "soluble" KFeIII[FeII(CN)6]·xH2O or the alternative "insoluble" Fe[FeII(CN)6]3·xH2O compounds, used by artists from shortly after the discovery of Prussian blue in 1704 and well into the early twentieth century, often fade when exposed to light. In order to achieve this goal it was decided that first, for comparison purposes, we had to prepare and fully characterize Prussian blues prepared by various, often commercially successful, synthetic methods. The characterization has employed a large variety of modern methods to determine both the stoichiometry of the Prussian blues and the arrangement of the voids found in the latter "insoluble" Prussian blues. The refinement of synchrotron radiation derived X-ray powder diffraction data obtained for a formally soluble and an insoluble Prussian blue required refinement in the Pm3[combining macron]m space group and lead to the K1.9[FeFe(CN)18]·{1.9 OH + 7.0H2O}, 1, and FeFe(CN)18·11.0H2O, 2, stoichiometries. The former compound, 1, exhibits an apparently random iron(ii) long-range void arrangement, whereas 2 exhibits a more non-random long-range arrangement, however, a pair distribution function analysis indicates a short-range ordering of the voids in both compounds. After further detailed characterization of many Prussian blue samples, painted samples on linen canvas, were subjected to accelerated light exposure for up to 800 hours either as pure Prussian blues or mixed with (PbCO3)2Pb(OH)2, ZnO or TiO2, the white pigments often used by artists to lighten the intense Prussian blue colour. The results indicate that the first two of these white pigments play a significant role in the fading of the colour of Prussian blues. In order to achieve our long-range goal, several Prussian blue samples were prepared from "ancient" recipes published in 1758 and 1779. These so-called "ancient" samples, painted in a dark and a pale blue shade, were also subjected to accelerated light exposure. The colorimetric results, in conjunction with X-ray powder diffraction refinements, pair distribution analysis and Mössbauer spectral results, indicate that, depending on the exact method of ancient preparation, the Prussian blue pigments were sometimes badly contaminated with alumina hydrate and/or ferrihydrite, a contamination which leads to extensive fading or decolourization of the Prussian blue pigments. The presence of ferrihydrite was subsequently confirmed in the study of a surface paint fragment from an eighteenth-century polychrome sculpture.

2.
Chemistry ; 21(2): 861-6, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25367446

RESUMO

The synthesis of a metal-organic framework (UiO-67) functionalised simultaneously with two different transition metal complexes (Ir and Pd or Rh) through a one-pot procedure is reported for the first time. This has been achieved by an iterative modification of the synthesis parameters combined with characterisation of the resulting materials using different techniques, including X-ray absorption spectroscopy (XAS). The method also allows the first synthesis of UiO-67 with a very wide range of loadings (from 4 to 43 mol %) of an iridium complex ([IrCp*(bpydc)(Cl)Cl](2-) ; bpydc=2,2'-bipyridine-5,5'-dicarboxylate, Cp*=pentamethylcyclopentadienyl) through a pre-functionalisation methodology.

3.
Chemistry ; 19(51): 17483-93, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24265270

RESUMO

Palladium nanoparticles have been immobilized into an amino-functionalized metal-organic framework (MOF), MIL-101Cr-NH2, to form Pd@MIL-101Cr-NH2. Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16 wt%Pd@MIL-101Cr-NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), N2-sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL-101Cr-NH2, electron tomography was employed to reconstruct the 3D volume of 8 wt%Pd@MIL-101Cr-NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high-energy X-rays (60 keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki-Miyaura cross-coupling reaction. The best catalytic performance was obtained with the MOF that contained 8 wt% palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6 nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15 mol%). The material can be recycled at least 10 times without alteration of its catalytic properties.

4.
J Synchrotron Radiat ; 20(Pt 3): 460-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23592626

RESUMO

Prussian blue, a hydrated iron(III) hexacyanoferrate(II) complex, is a synthetic pigment discovered in Berlin in 1704. Because of both its highly intense color and its low cost, Prussian blue was widely used as a pigment in paintings until the 1970s. The early preparative methods were rapidly recognized as a contributory factor in the fading of the pigment, a fading already known by the mid-eighteenth century. Herein two typical eighteenth-century empirical recipes have been reproduced and the resulting pigment analyzed to better understand the reasons for this fading. X-ray absorption and Mössbauer spectroscopy indicated that the early syntheses lead to Prussian blue together with variable amounts of an undesirable iron(III) product. Pair distribution functional analysis confirmed the presence of nanocrystalline ferrihydrite, Fe10O14(OH)2, and also identified the presence of alumina hydrate, Al10O14(OH)2, with a particle size of ∼15 Å. Paint layers prepared from these pigments subjected to accelerated light exposure showed a tendency to turn green, a tendency that was often reported in eighteenth- and nineteenth-century books. The presence of particles of hydrous iron(III) oxides was also observed in a genuine eighteenth-century Prussian blue sample obtained from a polychrome sculpture.


Assuntos
Ferrocianetos/análise , Ferrocianetos/química , Teste de Materiais/instrumentação , Pintura/análise , Espectrometria por Raios X/instrumentação , Síncrotrons/instrumentação , Difração de Raios X/instrumentação , Colorimetria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...