Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639105

RESUMO

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Proteína GLI1 em Dedos de Zinco , Animais , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Camundongos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Camundongos Transgênicos , Masculino , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia
2.
Eur Respir J ; 63(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212077

RESUMO

BACKGROUND: Fibroblast-to-myofibroblast conversion is a major driver of tissue remodelling in organ fibrosis. Distinct lineages of fibroblasts support homeostatic tissue niche functions, yet their specific activation states and phenotypic trajectories during injury and repair have remained unclear. METHODS: We combined spatial transcriptomics, multiplexed immunostainings, longitudinal single-cell RNA-sequencing and genetic lineage tracing to study fibroblast fates during mouse lung regeneration. Our findings were validated in idiopathic pulmonary fibrosis patient tissues in situ as well as in cell differentiation and invasion assays using patient lung fibroblasts. Cell differentiation and invasion assays established a function of SFRP1 in regulating human lung fibroblast invasion in response to transforming growth factor (TGF)ß1. MEASUREMENTS AND MAIN RESULTS: We discovered a transitional fibroblast state characterised by high Sfrp1 expression, derived from both Tcf21-Cre lineage positive and negative cells. Sfrp1 + cells appeared early after injury in peribronchiolar, adventitial and alveolar locations and preceded the emergence of myofibroblasts. We identified lineage-specific paracrine signals and inferred converging transcriptional trajectories towards Sfrp1 + transitional fibroblasts and Cthrc1 + myofibroblasts. TGFß1 downregulated SFRP1 in noninvasive transitional cells and induced their switch to an invasive CTHRC1+ myofibroblast identity. Finally, using loss-of-function studies we showed that SFRP1 modulates TGFß1-induced fibroblast invasion and RHOA pathway activity. CONCLUSIONS: Our study reveals the convergence of spatially and transcriptionally distinct fibroblast lineages into transcriptionally uniform myofibroblasts and identifies SFRP1 as a modulator of TGFß1-driven fibroblast phenotypes in fibrogenesis. These findings are relevant in the context of therapeutic interventions that aim at limiting or reversing fibroblast foci formation.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Camundongos , Animais , Humanos , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Diferenciação Celular , Fator de Crescimento Transformador beta1/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Curr Biol ; 33(23): 5132-5146.e5, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37992718

RESUMO

The mechanisms underlying the construction of an air-liquid interface in respiratory organs remain elusive. Here, we use live imaging and genetic analysis to describe the morphogenetic events generating an extracellular lipid lining of the Drosophila airways required for their gas filing and animal survival. We show that sequential Rab39/Syx1A/Syt1-mediated secretion of lysosomal acid sphingomyelinase (Drosophila ASM [dASM]) and Rab11/35/Syx1A/Rop-dependent exosomal secretion provides distinct components for lipid film assembly. Tracheal inactivation of Rab11 or Rab35 or loss of Rop results in intracellular accumulation of exosomal, multi-vesicular body (MVB)-derived vesicles. On the other hand, loss of dASM or Rab39 causes luminal bubble-like accumulations of exosomal membranes and liquid retention in the airways. Inactivation of the exosomal secretion in dASM mutants counteracts this phenotype, arguing that the exosomal secretion provides the lipid vesicles and that secreted lysosomal dASM organizes them into a continuous film. Our results reveal the coordinated functions of extracellular vesicle and lysosomal secretions in generating a lipid layer crucial for airway gas filling and survival.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Tensoativos , Endossomos , Traqueia , Lipídeos , Proteínas do Tecido Nervoso , Proteínas de Drosophila/genética
4.
Elife ; 122023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706489

RESUMO

The acquisition of distinct branch sizes and shapes is a central aspect in tubular organ morphogenesis and function. In the Drosophila airway tree, the interplay of apical extracellular matrix (ECM) components with the underlying membrane and cytoskeleton controls tube elongation, but the link between ECM composition with apical membrane morphogenesis and tube size regulation is elusive. Here, we characterized Emp (epithelial membrane protein), a Drosophila CD36 homolog belonging to the scavenger receptor class B protein family. emp mutant embryos fail to internalize the luminal chitin deacetylases Serp and Verm at the final stages of airway maturation and die at hatching with liquid filled airways. Emp localizes in apical epithelial membranes and shows cargo selectivity for LDLr-domain containing proteins. emp mutants also display over elongated tracheal tubes with increased levels of the apical proteins Crb, DE-cad, and phosphorylated Src (p-Src). We show that Emp associates with and organizes the ßH-Spectrin cytoskeleton and is itself confined by apical F-actin bundles. Overexpression or loss of its cargo protein Serp lead to abnormal apical accumulations of Emp and perturbations in p-Src levels. We propose that during morphogenesis, Emp senses and responds to luminal cargo levels by initiating apical membrane endocytosis along the longitudinal tube axis and thereby restricts airway elongation.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Endocitose , Receptores Depuradores , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Morfogênese , Receptores Depuradores/metabolismo , Traqueia/metabolismo
5.
Front Immunol ; 14: 1260973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727782

RESUMO

Introduction: Acute respiratory distress syndrome (ARDS) is a common complication of influenza virus (IV) infection. During ARDS, alveolar protein concentrations often reach 40-90% of plasma levels, causing severe impairment of gas exchange and promoting deleterious alveolar remodeling. Protein clearance from the alveolar space is at least in part facilitated by the multi-ligand receptor megalin through clathrin-mediated endocytosis. Methods: To investigate whether IV infection impairs alveolar protein clearance, we examined albumin uptake and megalin expression in MLE-12 cells and alveolar epithelial cells (AEC) from murine precision-cut lung slices (PCLS) and in vivo, under IV infection conditions by flow cytometry and western blot. Transcriptional levels from AEC and broncho-alveolar lavage (BAL) cells were analyzed in an in-vivo mouse model by RNAseq. Results: IV significantly downregulated albumin uptake, independently of activation of the TGF-ß1/GSK3ß axis that has been previously implicated in the regulation of megalin function. Decreased plasma membrane abundance, total protein levels, and mRNA expression of megalin were associated with this phenotype. In IV-infected mice, we identified a significant upregulation of matrix metalloproteinase (MMP)-14 in BAL fluid cells. Furthermore, the inhibition of this protease partially recovered total megalin levels and albumin uptake. Discussion: Our results suggest that the previously described MMP-driven shedding mechanisms are potentially involved in downregulation of megalin cell surface abundance and clearance of excess alveolar protein. As lower alveolar edema protein concentrations are associated with better outcomes in respiratory failure, our findings highlight the therapeutic potential of a timely MMP inhibition in the treatment of IV-induced ARDS.


Assuntos
Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Camundongos , Células Epiteliais Alveolares , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Transporte Biológico , Albuminas
7.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768968

RESUMO

A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.


Assuntos
Células Epiteliais Alveolares , Clatrina , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Clatrina/metabolismo , Pulmão/metabolismo , Células Epiteliais/metabolismo , Albumina Sérica/metabolismo , Alvéolos Pulmonares/metabolismo
8.
Nat Cell Biol ; 25(2): 351-365, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646791

RESUMO

The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.


Assuntos
Embrião de Mamíferos , Perfilação da Expressão Gênica , Humanos , Diferenciação Celular/genética , Pulmão , Células-Tronco
9.
Nat Commun ; 14(1): 509, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720873

RESUMO

Spatially resolved transcriptomics has enabled precise genome-wide mRNA expression profiling within tissue sections. The performance of methods targeting the polyA tails of mRNA relies on the availability of specimens with high RNA quality. Moreover, the high cost of currently available spatial resolved transcriptomics assays requires a careful sample screening process to increase the chance of obtaining high-quality data. Indeed, the upfront analysis of RNA quality can show considerable variability due to sample handling, storage, and/or intrinsic factors. We present RNA-Rescue Spatial Transcriptomics (RRST), a workflow designed to improve mRNA recovery from fresh frozen specimens with moderate to low RNA quality. First, we provide a benchmark of RRST against the standard Visium spatial gene expression protocol on high RNA quality samples represented by mouse brain and prostate cancer samples. Then, we test the RRST protocol on tissue sections collected from five challenging tissue types, including human lung, colon, small intestine, pediatric brain tumor, and mouse bone/cartilage. In total, we analyze 52 tissue sections and demonstrate that RRST is a versatile, powerful, and reproducible protocol for fresh frozen specimens of different qualities and origins.


Assuntos
RNA , Transcriptoma , Criança , Masculino , Humanos , Animais , Camundongos , Transcriptoma/genética , RNA Mensageiro , Benchmarking , Bioensaio
10.
Cell Mol Life Sci ; 79(11): 581, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36333491

RESUMO

Repair-supportive mesenchymal cells (RSMCs) have been recently reported in the context of naphthalene (NA)-induced airway injury and regeneration. These cells transiently express smooth muscle actin (Acta2) and are enriched with platelet-derived growth factor receptor alpha (Pdgfra) and fibroblast growth factor 10 (Fgf10) expression. Genetic deletion of Ctnnb1 (gene coding for beta catenin) or Fgf10 in these cells using the Acta2-Cre-ERT2 driver line after injury (defined as NA-Tam condition; Tam refers to tamoxifen) led to impaired repair of the airway epithelium. In this study, we demonstrate that RSMCs are mostly captured using the Acta2-Cre-ERT2 driver when labeling occurs after (NA-Tam condition) rather than before injury (Tam-NA condition), and that their expansion occurs mostly between days 3 and 7 following NA treatment. Previous studies have shown that lineage-traced peribronchial GLI1+ cells are transiently amplified after NA injury. Here, we report that Gli1 expression is enriched in RSMCs. Using lineage tracing with Gli1Cre-ERT2 mice combined with genetic inactivation of Fgf10, we show that GLI1+ cells with Fgf10 deletion fail to amplify around the injured airways, thus resulting in impaired airway epithelial repair. Interestingly, Fgf10 expression is not upregulated in GLI1+ cells following NA treatment, suggesting that epithelial repair is mostly due to the increased number of Fgf10-expressing GLI1+ cells. Co-culture of SCGB1A1+ cells with GLI1+ cells isolated from non-injured or injured lungs showed that GLI1+ cells from these two conditions are similarly capable of supporting bronchiolar organoid (or bronchiolosphere) formation. Single-cell RNA sequencing on sorted lineage-labeled cells showed that the RSMC signature resembles that of alveolar fibroblasts. Altogether, our study provides strong evidence for the involvement of mesenchymal progenitors in airway epithelial regeneration and highlights the critical role played by Fgf10-expressing GLI1+ cells in this context.


Assuntos
Células-Tronco Mesenquimais , Camundongos , Animais , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Pulmão/metabolismo , Células-Tronco , Epitélio/fisiologia , Células Epiteliais/metabolismo
11.
Nat Commun ; 13(1): 6243, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271083

RESUMO

Cell competition is a conserved homeostatic mechanism whereby epithelial cells eliminate neighbors with lower fitness. Cell communication at the interface of wild-type "winner" cells and polarity-deficient (scrib-/-) "losers" is established through Sas-mediated Ptp10D activation in polarity-deficient cells. This tumor-suppressive cell competition restrains EGFR and Hippo signaling and enables Eiger-JNK mediated apoptosis in scrib-/- clones. Here, we show that the activation state of the endosomal actin regulator WASH is a central node linking EGFR and Hippo signaling activation. The tyrosine kinase Btk29A and its substrate WASH are required downstream of Ptp10D for "loser" cell elimination. Constitutively active, phosphomimetic WASH is sufficient to induce both EGFR and Yki activation leading to overgrowth. On the mechanistic level we show that Ptp10D is recycled by the WASH/retromer complex, while EGFR is recycled by the WASH/retriever complex. Constitutive WASH activation selectively interferes with retromer function leading to Ptp10D mistargeting while promoting EGFR recycling and signaling activation. Phospho-WASH also activates aberrant Arp2/3 actin polymerization, leading to cytoskeletal imbalance, Yki activation and reduced apoptosis. Selective manipulation of WASH phosphorylation on sorting endosomes may restrict epithelial tumorous growth.


Assuntos
Competição entre as Células , Neoplasias , Humanos , Actinas/metabolismo , Via de Sinalização Hippo , Endossomos/metabolismo , Proteínas Tirosina Quinases , Receptores ErbB
12.
Cell Mol Life Sci ; 79(6): 302, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35587837

RESUMO

Fibroblast growth factor receptor 2b (Fgfr2b) signaling is essential throughout lung development to form the alveolar epithelial lineage. However, its role in alveolar epithelial type 2 cells (AT2s) homeostasis was recently considered dispensable. SftpcCreERT2; Fgfr2bflox/flox; tdTomatoflox/flox mice were used to delete Fgfr2b expression in cells belonging to the AT2 lineage, which contains mature AT2s and a novel SftpcLow lineage-traced population called "injury activated alveolar progenitors" or IAAPs. Upon continuous tamoxifen exposure for either 1 or 2 weeks to delete Fgfr2b, a shrinking of the AT2 population is observed. Mature AT2s exit the cell cycle, undergo apoptosis and fail to form alveolospheres in vitro. However, the lung morphometry appears normal, suggesting the involvement of compensatory mechanisms. In mutant lungs, IAAPs which escaped Fgfr2b deletion expand, display enhanced alveolosphere formation in vitro and increase drastically their AT2 signature, suggesting differentiation towards mature AT2s. Interestingly, a significant increase in AT2s and decrease in IAPPs occurs after a 1-week tamoxifen exposure followed by an 8-week chase period. Although mature AT2s partially recover their alveolosphere formation capabilities, the IAAPs no longer display this property. Single-cell RNA seq analysis confirms that AT2s and IAAPs represent stable and distinct cell populations and recapitulate some of their characteristics observed in vivo. Our results underscore the essential role played by Fgfr2b signaling in the maintenance of the AT2 lineage in the adult lung during homeostasis and suggest that the IAAPs could represent a new population of AT2 progenitors.


Assuntos
Pulmão , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Células Epiteliais Alveolares , Animais , Diferenciação Celular , Homeostase , Pulmão/metabolismo , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Tamoxifeno/farmacologia
13.
Stem Cells ; 40(6): 605-617, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35437594

RESUMO

Bronchopulmonary dysplasia (BPD) is a neonatal lung disease developing in premature babies characterized by arrested alveologenesis and associated with decreased Fibroblast growth factor 10 (FGF10) expression. One-week hyperoxia (HYX) exposure of newborn mice leads to a permanent arrest in alveologenesis. To test the role of Fgf10 signaling to promote de novo alveologenesis following hyperoxia, we used transgenic mice allowing inducible expression of Fgf10 and recombinant FGF10 (rFGF10) protein delivered intraperitoneally. We carried out morphometry analysis, and IF on day 45. Alveolospheres assays were performed co-culturing AT2s from normoxia (NOX) with FACS-isolated Sca1Pos resident mesenchymal cells (rMC) from animals exposed to NOX, HYX-PBS, or HYX-FGF10. scRNAseq between rMC-Sca1Pos isolated from NOX and HYX-PBS was also carried out. Transgenic overexpression of Fgf10 and rFGF10 administration rescued the alveologenesis defects following HYX. Alveolosphere assays indicate that the activity of rMC-Sca1Pos is negatively impacted by HYX and partially rescued by rFGF10 treatment. Analysis by IF demonstrates a significant impact of rFGF10 on the activity of resident mesenchymal cells. scRNAseq results identified clusters expressing Fgf10, Fgf7, Pdgfra, and Axin2, which could represent the rMC niche cells for the AT2 stem cells. In conclusion, we demonstrate that rFGF10 administration is able to induce de novo alveologenesis in a BPD mouse model and identified subpopulations of rMC-Sca1Pos niche cells potentially representing its cellular target.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos
14.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112129

RESUMO

The tracheal epithelium is a primary target for pulmonary diseases as it provides a conduit for air flow between the environment and the lung lobes. The cellular and molecular mechanisms underlying airway epithelial cell proliferation and differentiation remain poorly understood. Hedgehog (HH) signaling orchestrates communication between epithelial and mesenchymal cells in the lung, where it modulates stromal cell proliferation, differentiation and signaling back to the epithelium. Here, we reveal a previously unreported autocrine function of HH signaling in airway epithelial cells. Epithelial cell depletion of the ligand sonic hedgehog (SHH) or its effector smoothened (SMO) causes defects in both epithelial cell proliferation and differentiation. In cultured primary human airway epithelial cells, HH signaling inhibition also hampers cell proliferation and differentiation. Epithelial HH function is mediated, at least in part, through transcriptional activation, as HH signaling inhibition leads to downregulation of cell type-specific transcription factor genes in both the mouse trachea and human airway epithelial cells. These results provide new insights into the role of HH signaling in epithelial cell proliferation and differentiation during airway development.


Assuntos
Comunicação Autócrina/fisiologia , Diferenciação Celular , Proliferação de Células , Proteínas Hedgehog/metabolismo , Transdução de Sinais/genética , Animais , Células Cultivadas , Regulação para Baixo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Receptor Smoothened/deficiência , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Traqueia/citologia , Traqueia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Eur Respir J ; 60(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35086829

RESUMO

The Human Cell Atlas (HCA) consortium aims to establish an atlas of all organs in the healthy human body at single-cell resolution to increase our understanding of basic biological processes that govern development, physiology and anatomy, and to accelerate diagnosis and treatment of disease. The Lung Biological Network of the HCA aims to generate the Human Lung Cell Atlas as a reference for the cellular repertoire, molecular cell states and phenotypes, and cell-cell interactions that characterise normal lung homeostasis in healthy lung tissue. Such a reference atlas of the healthy human lung will facilitate mapping the changes in the cellular landscape in disease. The discovAIR project is one of six pilot actions for the HCA funded by the European Commission in the context of the H2020 framework programme. discovAIR aims to establish the first draft of an integrated Human Lung Cell Atlas, combining single-cell transcriptional and epigenetic profiling with spatially resolving techniques on matched tissue samples, as well as including a number of chronic and infectious diseases of the lung. The integrated Human Lung Cell Atlas will be available as a resource for the wider respiratory community, including basic and translational scientists, clinical medicine, and the private sector, as well as for patients with lung disease and the interested lay public. We anticipate that the Human Lung Cell Atlas will be the founding stone for a more detailed understanding of the pathogenesis of lung diseases, guiding the design of novel diagnostics and preventive or curative interventions.


Assuntos
Pneumopatias , Pulmão , Humanos , Proteômica , Tórax
16.
PLoS Biol ; 18(11): e3000675, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33216742

RESUMO

Changes in cell identities and positions underlie tissue development and disease progression. Although single-cell mRNA sequencing (scRNA-Seq) methods rapidly generate extensive lists of cell states, spatially resolved single-cell mapping presents a challenging task. We developed SCRINSHOT (Single-Cell Resolution IN Situ Hybridization On Tissues), a sensitive, multiplex RNA mapping approach. Direct hybridization of padlock probes on mRNA is followed by circularization with SplintR ligase and rolling circle amplification (RCA) of the hybridized padlock probes. Sequential detection of RCA-products using fluorophore-labeled oligonucleotides profiles thousands of cells in tissue sections. We evaluated SCRINSHOT specificity and sensitivity on murine and human organs. SCRINSHOT quantification of marker gene expression shows high correlation with published scRNA-Seq data over a broad range of gene expression levels. We demonstrate the utility of SCRINSHOT by mapping the locations of abundant and rare cell types along the murine airways. The amenability, multiplexity, and quantitative qualities of SCRINSHOT facilitate single-cell mRNA profiling of cell-state alterations in tissues under a variety of native and experimental conditions.


Assuntos
Hibridização In Situ/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Célula Única/métodos , Animais , Linhagem Celular , Corantes Fluorescentes , Humanos , Camundongos , Hibridização de Ácido Nucleico/métodos , Oligonucleotídeos , RNA/química , RNA Mensageiro/metabolismo
17.
Free Radic Biol Med ; 160: 860-870, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32980539

RESUMO

Aging is associated with decreased nitric oxide (NO) bioavailability and signalling. Boosting of a dietary nitrate-nitrite-NO pathway e.g. by ingestion of leafy green vegetables, improves cardiometabolic function, mitochondrial efficiency and reduces oxidative stress in humans and rodents, making dietary nitrate and nitrite an appealing intervention to address age-related disorders. On the other hand, these anions have long been implicated in detrimental health effects of our diet, particularly in formation of carcinogenic nitrosamines. The aim of this study was to assess whether inorganic nitrite affects lifespan in Drosophila melanogaster and investigate possible mechanisms underlying any such effect. In a survival assay, female flies fed a nitrite supplemented diet showed lifespan extension by 9 and 15% with 0.1 and 1 µM nitrite respectively, with no impact of nitrite on reproductive output. Interestingly, nitrite could also protect female flies from age-dependent locomotor decline, indicating a protective effect on healthspan. NO generation from nitrite involved Drosophila commensal bacteria and was indicated by a fluorescent probe as well as direct measurements of NO gas formation with chemiluminescence. Nutrient sensing pathways such as TOR and sirtuins, have been strongly implicated in lifespan extension. In aged flies, nitrite supplementation significantly downregulated dTOR and upregulated dSir2 gene expression. Total triglycerides and glucose were decreased, a described downstream effect of both TOR and sirtuin pathways. In conclusion, we demonstrate that very low doses of dietary nitrite extend lifespan and favour healthspan in female flies. We propose modulation of nutrient sensing pathways as driving mechanisms for such effects.


Assuntos
Proteínas de Drosophila , Longevidade , Animais , Drosophila , Drosophila melanogaster , Feminino , Nitritos
18.
J Cell Biol ; 218(8): 2762-2781, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31315941

RESUMO

Epithelial organ size and shape depend on cell shape changes, cell-matrix communication, and apical membrane growth. The Drosophila melanogaster embryonic tracheal network is an excellent model to study these processes. Here, we show that the transcriptional coactivator of the Hippo pathway, Yorkie (YAP/TAZ in vertebrates), plays distinct roles in the developing Drosophila airways. Yorkie exerts a cytoplasmic function by binding Drosophila Twinstar, the orthologue of the vertebrate actin-severing protein Cofilin, to regulate F-actin levels and apical cell membrane size, which are required for proper tracheal tube elongation. Second, Yorkie controls water tightness of tracheal tubes by transcriptional regulation of the δ-aminolevulinate synthase gene (Alas). We conclude that Yorkie has a dual role in tracheal development to ensure proper tracheal growth and functionality.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Traqueia/anatomia & histologia , Traqueia/embriologia , Transativadores/metabolismo , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Gases/metabolismo , Humanos , Mutação/genética , Ligação Proteica , Traqueia/metabolismo , Proteínas de Sinalização YAP
19.
Nat Commun ; 10(1): 2193, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097705

RESUMO

Filamentous actin (F-actin) networks facilitate key processes like cell shape control, division, polarization and motility. The dynamic coordination of F-actin networks and its impact on cellular activities are poorly understood. We report an antagonistic relationship between endosomal F-actin assembly and cortical actin bundle integrity during Drosophila airway maturation. Double mutants lacking receptor tyrosine phosphatases (PTP) Ptp10D and Ptp4E, clear luminal proteins and disassemble apical actin bundles prematurely. These defects are counterbalanced by reduction of endosomal trafficking and by mutations affecting the tyrosine kinase Btk29A, and the actin nucleation factor WASH. Btk29A forms protein complexes with Ptp10D and WASH, and Btk29A phosphorylates WASH. This phosphorylation activates endosomal WASH function in flies and mice. In contrast, a phospho-mimetic WASH variant induces endosomal actin accumulation, premature luminal endocytosis and cortical F-actin disassembly. We conclude that PTPs and Btk29A regulate WASH activity to balance the endosomal and cortical F-actin networks during epithelial tube maturation.


Assuntos
Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Morfogênese/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrião não Mamífero/diagnóstico por imagem , Epitélio/diagnóstico por imagem , Epitélio/crescimento & desenvolvimento , Fibroblastos , Microscopia Intravital , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Fosforilação/fisiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Sistema Respiratório/diagnóstico por imagem , Sistema Respiratório/crescimento & desenvolvimento , Proteínas de Transporte Vesicular/genética
20.
Nat Commun ; 10(1): 2130, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086178

RESUMO

Hypoxia signaling plays a major role in non-malignant and malignant hyperproliferative diseases. Pulmonary hypertension (PH), a hypoxia-driven vascular disease, is characterized by a glycolytic switch similar to the Warburg effect in cancer. Ras association domain family 1A (RASSF1A) is a scaffold protein that acts as a tumour suppressor. Here we show that hypoxia promotes stabilization of RASSF1A through NOX-1- and protein kinase C- dependent phosphorylation. In parallel, hypoxia inducible factor-1 α (HIF-1α) activates RASSF1A transcription via HIF-binding sites in the RASSF1A promoter region. Vice versa, RASSF1A binds to HIF-1α, blocks its prolyl-hydroxylation and proteasomal degradation, and thus enhances the activation of the glycolytic switch. We find that this mechanism operates in experimental hypoxia-induced PH, which is blocked in RASSF1A knockout mice, in human primary PH vascular cells, and in a subset of human lung cancer cells. We conclude that RASSF1A-HIF-1α forms a feedforward loop driving hypoxia signaling in PH and cancer.


Assuntos
Hipóxia Celular , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Modelos Animais de Doenças , Glicólise , Células HEK293 , Células HeLa , Humanos , Hipertensão Pulmonar/cirurgia , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/cirurgia , Masculino , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso , NADPH Oxidase 1/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteína Quinase C/metabolismo , Proteólise , Artéria Pulmonar/citologia , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...