Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(20): 6859-6890, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37382508

RESUMO

TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.

2.
J Chem Theory Comput ; 18(12): 7272-7285, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36350224

RESUMO

Nonresonant X-ray emission (XE) energies and oscillator strengths are obtained using the effective potential of the generalized Kohn-Sham semi-canonical projected random phase approximation (GKS-spRPA) method. XE energies are estimated as a difference between the valence and core ionization eigenvalues, while the oscillator strengths are obtained within a frozen orbital approximation. This straightforward approach provides accurate XE energies without any need for core-hole reference states, empirical shifting parameters, or tuning of density functionals. To account for relativistic corrections to the core orbitals, we have formulated a scalar relativistic (sr) GKS-spRPA approach based on the spin-free X2C one-electron Hamiltonian. The sr-GKS-spRPA method provides highly reliable XE energies using uncontracted basis-sets on atoms where the core-hole is created prior to emission. For the largest basis-sets used in our study, using completely uncontracted polarized core-valence Dunning basis-sets, the mean absolute errors (MAEs) are within 0.7 eV compared to experimental reference values for a test-set consisting of 27 valence-to-core XE energies of molecules with second- and third-period elements. Considering a balance of accuracy and computational effort, we recommend the use of s-uncontracted def2-TZVP for second-period and all-uncontracted def2-TZVP for third-period elements. For this recommended basis-set, the MAE is 0.2 eV. The analytically continued sr-GKS-spRPA approach, with an O(N4) computational cost, enables efficient computation of XE spectra of molecules such as S8 and C60 with several core-hole states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...