Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 10(3): 745-787, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36594186

RESUMO

Electrochemical energy storage devices with stable performance, high power output, and energy density are urgently needed to meet the global energy demand. Among the different electrochemical energy storage devices, batteries have become the most promising energy technologies and ranked as a highly investigated research subject. Recently, metal-air batteries especially Zn-air batteries (ZABs) have attracted enormous scientific interest in the electrochemical community due to their ease of operation, sustainability, environmental friendliness, and high efficiency. The oxygen electrocatalytic reactions [oxygen reduction reaction (ORR) and oxygen evolution reaction (OER)] are the two fundamental reactions for the development of ZABs. Noble metal-based electrocatalysts are widely considered as the benchmark for oxygen electrocatalysis, but their practical application in rechargeable ZAB is hindered due to several shortcomings. Thus, to replace noble metal-based catalysts, a wide range of transition-metal-based materials and heteroatom-doped metal-free carbon materials has been extensively investigated as oxygen electrocatalysts for ZABs. Recently, metal-organic frameworks (MOFs) with unique structural flexibility and uniformly dispersed active sites have become attractive precursors for the synthesis of a large variety of advanced functional materials. Herein, we summarize the recent progress of MOF-derived oxygen electrocatalysts (MOF-derived carbon nanomaterials, MOF-derived alloys/nanoparticles, and MOF-derived single-atom electrocatalysts) for ZABs. Specifically, we highlight MOF-derived single-atom electrocatalysts owing to the wide exploration of these emerging materials in electrocatalysis. The influence of the active sites, structural/compositional design, and porosity of MOF-derived advanced materials on the oxygen electrocatalytic performances is also discussed. Finally, the existing challenges and prospects of MOF-derived electrocatalysts in ZABs are briefly highlighted.

2.
ACS Appl Mater Interfaces ; 14(1): 1138-1148, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932312

RESUMO

Recently, the use of a gel polymer electrolyte for the development of robust, flexible, quasi-solid, ultra-stable, high-performance zinc-ion batteries (ZiBs) as an alternative to lithium-ion batteries has attracted widespread attention. However, the performance of ZiBs is limited due to the lack of suitable gel electrolytes. Herein, a ″water-in-salt″ (WiS)-based hydrophilic molecular crowded polymer gel electrolyte and binder free V2O5@MnO2 cathode are introduced to augment the durability, flexibility, safety, and electrochemical performance of ZiBs. The ″free water trapping″ capability of the WiS-based cross-linked molecular crowded polymer electrolyte provides an extended electrochemical stability window (ESW) of the device. The quasi-solid-state ZiB delivers ∼422 mAh g-1 discharge capacity and shows excellent cycling stability as high as ∼79.83% retention of the initial capacity after 5000 cycles. The durable, flexible, and ultra-stable ZiB with the polymer gel electrolyte performs well under various severe conditions where both the battery safety and energy density are of high priority. This work demonstrates a new approach and application for the development of durable, flexible, ultra-stable, quasi-solid-state ZiBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...