Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Funct Plant Biol ; 50(4): 277-293, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634915

RESUMO

Treatments of wheat (Triticum durum L.) seeds with sonication or hydropriming may enhance seed germination and vigour in association with γ-aminobutyric acid (GABA). Therefore, the objective of this study is to examine the effect of sonication and hydropriming treatments on seed germination of wheat through the characterisation of seed germination performance, GABA shunt metabolite level (GABA, glutamate, and alanine), and the level of glutamate decarboxylase (GAD) mRNA transcription. Wheat seeds were exposed to three treatments for 0, 5, 10, 15, and 20min: (1) sonication with water; (2) sonication without water; and (3) hydropriming without sonication. Treated seeds were evaluated for germination percentage, mean time to germinate, germination rate index in the warm germination test, and seedling emergence and shoot length in the cold test. GABA shunt metabolites level (GABA, glutamate, and alanine), and the level of GAD mRNA transcription were measured for the seeds after treatments and for seedlings during germination and cold tests. Seeds treated with sonication or hydropriming treatments had a higher germination rate index (faster germination) in the standard germination test, and higher seedling emergence and shoot length in the cold test. Seeds treated with sonication or hydropriming treatments showed an enhancement in GABA shunt and their metabolites (alanine and glutamate), and GAD mRNA transcription level compared to untreated-control seeds. In conclusion, the sonication or hydropriming treatments significantly improved the germination performance of wheat and enhanced GABA metabolism to maintain the C:N metabolic balance, especially under cold stress.


Assuntos
Germinação , Triticum , Triticum/metabolismo , Ultrassom , Sementes , Plântula , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia , Água/metabolismo , Água/farmacologia , Glutamatos/metabolismo , Glutamatos/farmacologia , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia
2.
Funct Plant Biol ; 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36346967

RESUMO

Activation of γ-aminobutyric acid (GABA) shunt pathway and upregulation of dehydrins are involved in metabolic homeostasis and protective mechanisms against drought stress. Seed germination percentage, seedling growth, levels of GABA, alanine, glutamate, malondialdehyde (MDA), and the expression of glutamate decarboxylase (GAD) and dehydrin (dhn and wcor) genes were examined in post-germination and seedlings of four durum wheat (Triticum durum L.) cultivars in response to water holding capacity levels (80%, 50%, and 20%). Data showed a significant decrease in seed germination percentage, seedling length, fresh and dry weight, and water content as water holding capacity level was decreased. Levels of GABA, alanine, glutamate, and MDA were significantly increased with a negative correlation in post-germination and seedling stages as water holding capacity level was decreased. Prolonged exposure to drought stress increased the GAD expression that activated GABA shunt pathway especially at seedlings growth stage to maintain carbon/nitrogen balance, amino acids and carbohydrates metabolism, and plant growth regulation under drought stress. The mRNA transcripts of dhn and wcor significantly increased as water availability decreased in all wheat cultivars during the post-germination stage presumably to enhance plant tolerance to drought stress by cell membrane protection, cryoprotection of enzymes, and prevention of reactive oxygen species (ROS) accumulation. This study showed that the four durum wheat cultivars responded differently to drought stress especially during the seedling growth stage which might be connected with ROS scavenging systems and the activation of antioxidant enzymes that were associated with activation of GABA shunt pathway and the production of GABA in durum seedlings.

3.
Plants (Basel) ; 11(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36079668

RESUMO

Tomato brown rugose fruit virus (ToBRFV; genus, Tobamovirus, family, Virgaviridae) was first reported in 2015 infecting tomatoes grown under protected cropping in the Jordan Valley. Since then, ToBRFV has been detected in tomatoes grown in both protected and open fields across Jordan. The increased incidence of ToBRFV prompted this investigation of the potential role of natural weed hosts in the dissemination of ToBRFV. A survey was conducted in the Jordan Valley and highlands to determine possible reservoir hosts of ToBRFV in fields and greenhouse complexes in which tomatoes were grown. Detection of ToBRFV infection was made by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and further confirmation by reverse-transcription polymerase chain reaction (RT-PCR), followed by DNA cloning and sequencing, and bioassays. Thirty weed species belonging to twenty-six genera from sixteen families were tested. Twelve species belonging to eight families were infected of which ten species are newly reported hosts for ToBRFV. Seed transmission of ToBRFV in Solanum nigrum was confirmed in a grow-out experiment. To our knowledge, this is the first report of the natural occurrence of ToBRFV on weed hosts. Identification of natural reservoirs of ToBRFV can help to develop management practices focused on weed plant species to prevent ToBRFV transmission. The extent to which ToBRFV survives in diverse alternate weed host species outside tomato growing seasons in different world regions requires further research in order to establish the risk associated with the possible contribution of weeds as a reservoir for primary infections in tomato crops.

4.
J Vis Exp ; (116)2016 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-27805595

RESUMO

Thermogradient tables were first developed in the 1950s primarily to test seed germination over a range of temperatures simultaneously without using a series of incubators. A temperature gradient is passively established across the surface of the table between the heated and cooled ends and is lost quickly at distances above the surface. Since temperature is only controlled on the table surface, experiments are restricted to shallow containers, such as Petri dishes, placed on the table. Welding continuous aluminum vertical strips or gussets perpendicular to the surface of a table enables temperature control in depth via convective heat flow. Soil in the channels between gussets was maintained across a gradient of temperatures allowing a greater diversity of experimentation. The gusseted design was evaluated by germinating oat, lettuce, tomato, and melon seeds. Soil temperatures were monitored using individual, battery-powered dataloggers positioned across the table. LED lights installed in the lids or along the sides of the gradient table create a controlled temperature chamber where seedlings can be grown over a range of temperatures. The gusseted design enabled accurate determination of optimum temperatures for fastest germination rate and the highest percentage germination for each species. Germination information from gradient table experiments can help predict seed germination and seedling growth under the adverse soil conditions often encountered during field crop production. Temperature effects on seed germination, seedling growth, and soil ecology can be tested under controlled conditions in a laboratory using a gusseted thermogradient table.


Assuntos
Solo , Temperatura , Germinação , Incubadoras , Desenvolvimento Vegetal , Plântula , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...