Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(5)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082151

RESUMO

Noise generated by motion of charge and spin provides a unique window into materials at the atomic scale. From temperature of resistors to electrons breaking into fractional quasiparticles, "listening" to the noise spectrum is a powerful way to decode underlying dynamics. Here, we use ultrasensitive superconducting quantum interference device (SQUIDs) to probe the puzzling noise in a frustrated magnet, the spin-ice compound Dy2Ti2O7 (DTO), revealing cooperative and memory effects. DTO is a topological magnet in three dimensions-characterized by emergent magnetostatics and telltale fractionalized magnetic monopole quasiparticles-whose real-time dynamical properties have been an enigma from the very beginning. We show that DTO exhibits highly anomalous noise spectra, differing significantly from the expected Brownian noise of monopole random walks, in three qualitatively different regimes: equilibrium spin ice, a "frozen" regime extending to ultralow temperatures, and a high-temperature "anomalous" paramagnet. We present several distinct mechanisms that give rise to varied colored noise spectra. In addition, we identify the structure of the local spin-flip dynamics as a crucial ingredient for any modeling. Thus, the dynamics of spin ice reflects the interplay of local dynamics with emergent topological degrees of freedom and a frustration-generated imperfectly flat energy landscape, and as such, it points to intriguing cooperative and memory effects for a broad class of magnetic materials.

2.
J Phys Condens Matter ; 34(4)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33607645

RESUMO

Machine learning promises to deliver powerful new approaches to neutron scattering from magnetic materials. Large scale simulations provide the means to realise this with approaches including spin-wave, Landau Lifshitz, and Monte Carlo methods. These approaches are shown to be effective at simulating magnetic structures and dynamics in a wide range of materials. Using large numbers of simulations the effectiveness of machine learning approaches are assessed. Principal component analysis and nonlinear autoencoders are considered with the latter found to provide a high degree of compression and to be highly suited to neutron scattering problems. Agglomerative heirarchical clustering in the latent space is shown to be effective at extracting phase diagrams of behavior and features in an automated way that aid understanding and interpretation. The autoencoders are also well suited to optimizing model parameters and were found to be highly advantageous over conventional fitting approaches including being tolerant of artifacts in untreated data. The potential of machine learning to automate complex data analysis tasks including the inversion of neutron scattering data into models and the processing of large volumes of multidimensional data is assessed. Directions for future developments are considered and machine learning argued to have high potential for impact on neutron science generally.

3.
Nat Commun ; 11(1): 892, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060263

RESUMO

Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...