Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(11): 12117-12126, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34454759

RESUMO

Emerging knowledge shows the importance of preweaning nutrition on programming the gastrointestinal microbiome and development of the gut barrier function. The aim of this study was to assess the effects of supplementing cow milk with either intact dried Ulva sp., Ascophyllum nodosum, or Saccharina latissima on growth performance and several gut health parameters of preweaning dairy calves. Forty male Holstein calves were selected based on birth weight (41 ± 4 kg) and plasma Brix percentage (≥8.7%) at d 2 of life. From d 2 to d 42 of life, the control calves (n = 10) were fed with cow milk (8 L/d) without seaweed supplementation, and the experimental calves were fed with cow milk (8 L/d) supplemented with either Ulva sp. (n = 10), A. nodosum (n = 10), or S. latissima (n = 10) at a concentration of 50 g/8 L of cow milk per day (i.e., 5% on a dry matter basis). Calves were weighed every week, and body weight gain and calf starter intake were monitored weekly. At d 42 ± 3 of life, calves were slaughtered. The organ weights and digesta pH from the reticulorumen, mid- and end small intestine, and mid-colon were recorded. A tissue sample (5 cm) collected from the mid-small intestine was analyzed for histomorphology. Digesta from the mid-small intestine and mid-colon were analyzed for lactobacilli, Escherichia coli, and Enterobacteriaceae, and short-chain fatty acid profile. Weight gain of the calves was not affected by seaweed supplementation. Proportional organ weights were not affected by seaweed supplementation except for reticulorumen weight, which was higher in calves fed Ulva sp. Both the mid-small intestinal and mid-colonic digesta populations of lactobacilli, Enterobacteriaceae, and E. coli, as well as the mid-small intestinal histomorphology in seaweed-supplemented calves were not different from control calves. However, acetic acid proportion in mid-colonic digesta was increased in calves fed Ulva sp. and A. nodosum, whereas butyric acid proportion was decreased compared with the control calves. Digesta pH in mid- and end small intestine and mid-colon were not affected, whereas ruminal pH was increased in calves fed Ulva sp. compared with the control calves. In conclusion, intact dried seaweed supplementation did not improve the growth or selected gut health parameters (i.e., histomorphology, digesta pH, bacteria, and short-chain fatty acids) in preweaning Holstein calves.


Assuntos
Ascophyllum , Microbioma Gastrointestinal , Ulva , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Escherichia coli , Ácidos Graxos Voláteis , Leite , Desmame
2.
J Dairy Sci ; 104(3): 3575-3584, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33455754

RESUMO

Intact seaweed or seaweed extracts are used as feed supplements to improve the gut microbiome in young animals. Seaweeds provide functional polysaccharides, and they are a good source of vitamins, minerals, and phenolic compounds, all of which are relevant for immune system development. However, literature on the effects of dried seaweed supplementation on immune system development is limited, especially in calves. This experiment aimed to study the effect of feeding milk supplemented with Ulva lactuca, Ascophyllum nodosum, or Saccharina latissima on the systemic immune status of preweaning dairy calves. Forty male Holstein calves with birth body weight 41 ± 4 kg and plasma Brix percentage ≥8.7% at d 2 after birth were used in this study. Calves were fed 4 L of cow milk twice a day (total 8 L/d). From d 2 to d 28, calves in the control group (n = 10) received milk without seaweed supplementation. Over the same period, experimental calves received milk supplemented with Ulva lactuca (SW1; n = 10), Ascophyllum nodosum (SW2; n = 10), or Saccharina latissima (SW3, n = 10). Dried and ground seaweeds were offered at a daily allowance of 50 g/8 L of milk (i.e., approximately 5% inclusion rate on a dry matter basis). Blood samples were collected from a jugular vein on d 2, 4, 7, 14, 21, and 28 after birth. Plasma concentrations of total protein, albumin, immunoglobulins, and acute-phase proteins (i.e., serum amyloid A, fibrinogen, and haptoglobin) were measured. We detected no differences in average daily gain, plasma immunoglobulins, albumin, or total protein. However, the contrast analysis revealed that plasma concentrations of fibrinogen (SW1 and SW2) and serum amyloid A (SW2 and SW3) were significantly higher in the seaweed groups compared with the control group. We also found a tendency for high plasma haptoglobin in the seaweed groups (SW1 and SW2) compared with the control group. Differences in acute-phase protein concentrations could be partially explained by the large differences in micromineral intake between control and seaweed-supplemented calves. Feeding milk supplemented with dried seaweed increased plasma concentrations of variables related to the innate immune response in preweaning dairy calves.


Assuntos
Leite , Alga Marinha , Ração Animal/análise , Animais , Peso Corporal , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Imunidade Inata , Masculino , Desmame
3.
J Dairy Sci ; 103(6): 5525-5531, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32253037

RESUMO

It is well established that intravenous administration of lipopolysaccharides (LPS)-cell wall components from gram-negative bacteria-induce acute inflammatory responses in dairy calves, but the effect of oral administration of LPS to dairy calves is currently unknown. To evaluate the effects of oral administration of LPS derived from Escherichia coli (serotype O111:B4) on innate immune responses in milk-fed Holstein calves, 20 visually healthy calves (34 ± 1 d) received 4 L of milk with LPS (12 µg/kg body weight; n = 10; LPS) or without LPS (n = 10; control) at the morning feeding. Samples were collected at 0.5 h before the morning feeding and at 3, 6, 24, 48, 72, and 168 h after the morning feeding to measure rectal temperature and heart rate, as well as plasma-negative and plasma-positive acute phase proteins (i.e., haptoglobin, serum amyloid A, albumin, total protein, and fibrinogen) and immunoglobulin concentrations (IgG, IgM, and IgA). None of these measurements was affected by the oral administration of LPS. Oral administration of LPS at 12 µg/kg of body weight did not induce an acute inflammatory response in visually healthy milk-fed Holstein calves when administered in milk.


Assuntos
Bovinos/imunologia , Escherichia coli/química , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Proteínas de Fase Aguda/análise , Proteínas de Fase Aguda/efeitos dos fármacos , Administração Oral , Animais , Peso Corporal , Imunoglobulinas/sangue , Lipopolissacarídeos/administração & dosagem , Masculino , Leite/metabolismo , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...