Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biomedicines ; 11(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37509645

RESUMO

Prostate cancer is a heterogeneous disease, and one of the main obstacles in its management is the inability to foresee its course. Therefore, novel biomarkers are needed that will guide the treatment options. The extracellular matrix (ECM) is an important part of the tumor microenvironment that largely influences cell behavior. ECM components are ligands for integrin receptors which are involved in every step of tumor progression. An underlying characteristic of integrin activation and ligation is the formation of integrin adhesion complexes (IACs), intracellular structures that carry information conveyed by integrins. By using The Cancer Genome Atlas data, we show that the expression of ECM- and IACs-related genes is changed in prostate cancer. Moreover, machine learning methods revealed that they are a source of biomarkers for progression-free survival of patients that are stratified according to the Gleason score. Namely, low expression of FMOD and high expression of PTPN2 genes are associated with worse survival of patients with a Gleason score lower than 9. The FMOD gene encodes protein that may play a role in the assembly of the ECM and the PTPN2 gene product is a protein tyrosine phosphatase activated by integrins. Our results suggest potential biomarkers of prostate cancer progression.

2.
Cancers (Basel) ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36831650

RESUMO

Prostate cancer is among the leading cancers according to both incidence and mortality. Due to the high molecular, morphological and clinical heterogeneity, the course of prostate cancer ranges from slow growth that usually does not require immediate therapeutic intervention to aggressive and fatal disease that spreads quickly. However, currently available biomarkers cannot precisely predict the course of a disease, and novel strategies are needed to guide prostate cancer management. Amino acids serve numerous roles in cancers, among which are energy production, building block reservoirs, maintenance of redox homeostasis, epigenetic regulation, immune system modulation and resistance to therapy. In this article, by using The Cancer Genome Atlas (TCGA) data, we found that the expression of amino acid metabolism-related genes is highly aberrant in prostate cancer, which holds potential to be exploited in biomarker design or in treatment strategies. This change in expression is especially evident for catabolism genes and transporters from the solute carrier family. Furthermore, by using recursive partitioning, we confirmed that the Gleason score is strongly prognostic for progression-free survival. However, the expression of the genes SERINC3 (phosphatidylserine and sphingolipids generation) and CSAD (hypotaurine generation) can refine prognosis for high and low Gleason scores, respectively. Therefore, our results hold potential for novel prostate cancer progression biomarkers.

3.
Biomedicines ; 12(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38255186

RESUMO

Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.

4.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36230683

RESUMO

Anticancer monotherapies are often insufficient in eradicating cancer cells because cancers are driven by changes in numerous genes and pathways. Combination anticancer therapies which aim to target several cancer traits at once represent a substantial improvement in anticancer treatment. Cisplatin is a conventional chemotherapy agent widely used in the treatment of different cancer types. However, the shortcomings of cisplatin use include its toxicity and development of resistance. Therefore, from early on, combination therapies that include cisplatin were considered and used in a variety of cancers. EZH2, an epigenetic regulator, is frequently upregulated in cancers which, in general, potentiates cancer cell malignant behavior. In the past decade, numerous EZH2 inhibitors have been explored for their anticancer properties. In this overview, we present the studies that discuss the joint action of cisplatin and EZH2 inhibitors. According to the data presented, the use of cisplatin and EZH2 inhibitors may be beneficial in the treatment of lung, ovarian, and breast cancers, since there is a substantial amount of published evidence that suggests their concerted action. However, in testicular germ cell tumors, such a combination would not be recommended because cisplatin resistance seems to be associated with decreased expression of EZH2 in this tumor type.

5.
Life (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209195

RESUMO

Anticancer therapies mainly target primary tumor growth and little attention is given to the events driving metastasis formation. Metastatic prostate cancer, in comparison to localized disease, has a much worse prognosis. In the work presented here, groups of genes that are common to prostate cancer metastatic cells from bones, lymph nodes, and liver and those that are site-specific were delineated. The purpose of the study was to dissect potential markers and targets of anticancer therapies considering the common characteristics and differences in transcriptional programs of metastatic cells from different secondary sites. To that end, a meta-analysis of gene expression data of prostate cancer datasets from the GEO database was conducted. Genes with differential expression in all metastatic sites analyzed belong to the class of filaments, focal adhesion, and androgen receptor signaling. Bone metastases undergo the largest transcriptional changes that are highly enriched for the term of the chemokine signaling pathway, while lymph node metastasis show perturbation in signaling cascades. Liver metastases change the expression of genes in a way that is reminiscent of processes that take place in the target organ. Survival analysis for the common hub genes revealed involvements in prostate cancer prognosis and suggested potential biomarkers.

6.
Biomolecules ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572160

RESUMO

While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.


Assuntos
Neoplasias da Próstata/patologia , Processamento de Proteína Pós-Traducional , Progressão da Doença , Humanos , Masculino , Neoplasias da Próstata/metabolismo
7.
Front Cell Dev Biol ; 9: 786758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977030

RESUMO

Integrins are heterodimeric cell surface glycoproteins used by cells to bind to the extracellular matrix (ECM) and regulate tumor cell proliferation, migration and survival. A causative relationship between integrin expression and resistance to anticancer drugs has been demonstrated in different tumors, including head and neck squamous cell carcinoma. Using a Cal27 tongue squamous cell carcinoma model, we have previously demonstrated that de novo expression of integrin αVß3 confers resistance to several anticancer drugs (cisplatin, mitomycin C and doxorubicin) through a mechanism involving downregulation of active Src, increased cell migration and invasion. In the integrin αVß3 expressing Cal27-derived cell clone 2B1, αVß5 expression was also increased, but unrelated to drug resistance. To identify the integrin adhesion complex (IAC) components that contribute to the changes in Cal27 and 2B1 cell adhesion and anticancer drug resistance, we isolated IACs from both cell lines. Mass spectrometry (MS)-based proteomics analysis indicated that both cell lines preferentially, but not exclusively, use integrin α6ß4, which is classically found in hemidesmosomes. The anticancer drug resistant cell clone 2B1 demonstrated an increased level of α6ß4 accompanied with increased deposition of a laminin-332-containing ECM. Immunofluorescence and electron microscopy demonstrated the formation of type II hemidesmosomes by both cell types. Furthermore, suppression of α6ß4 expression in both lines conferred resistance to anticancer drugs through a mechanism independent of αVß3, which implies that the cell clone 2B1 would have been even more resistant had the upregulation of α6ß4 not occurred. Taken together, our results identify a key role for α6ß4-containing type II hemidesmosomes in regulating anticancer drug sensitivity.

8.
Int J Biochem Cell Biol ; 131: 105903, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33309958

RESUMO

The Kank (kidney or KN motif and ankyrin repeat domain-containing) family of proteins has been described as essential for crosstalk between actin and microtubules. Kank1, 2, 3 and 4 arose by gene duplication and diversification and share conserved structural domains. KANK proteins are localised mainly to the plasma membrane in focal adhesions, indirectly affecting RhoA and Rac1 thus regulating actin cytoskeleton. In addition, Kank proteins are part of the cortical microtubule stabilisation complex regulating microtubules. Most of the data have been collected for Kank1 protein whose expression promotes apoptosis and cell-cycle arrest while Kank3 was identified as hypoxia-inducible proapoptotic target of p53. A discrepancy in Kanks role in regulation of cell migration and sensitivity to antitumour drugs has been observed in different cell models. Since expression of Kank1 and 3 correlate positively with tumour progression and patient outcome, at least in some tumour types, they are candidates for tumour suppressors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Adesões Focais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Adesões Focais/patologia , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Paclitaxel/uso terapêutico , Domínios Proteicos , Transdução de Sinais , Resultado do Tratamento , Vincristina/uso terapêutico
9.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182817

RESUMO

Most data published on curcumin and curcumin-based formulations are very promising. In cancer research, the majority of data has been obtained in vitro. Less frequently, researchers used experimental animals. The results of several clinical studies are conclusive, and these studies have established a good foundation for further research focusing on implementing curcumin in clinical oncology. However, the issues regarding timely data reporting and lack of disclosure of the exact curcumin formulations used in these studies should not be neglected. This article is a snapshot of the current status of publicly available data on curcumin clinical trials and a detailed presentation of results obtained so far with some curcumin formulations. Phenomena related to the observed effects of curcumin shown in clinical trials are presented, and its modifying effect on gut microbiota and metabolic reprogramming is discussed. Based on available data, there is a strong indication that curcumin and its metabolites present molecules that do not necessarily need to be abundant in order to act locally and benefit systemically. Future clinical studies should be designed in a way that will take that fact into consideration.


Assuntos
Curcumina/uso terapêutico , Oncologia/tendências , Pesquisa Translacional Biomédica/tendências , Animais , Antineoplásicos/uso terapêutico , Disponibilidade Biológica , Ensaios Clínicos como Assunto , Curcumina/química , Microbioma Gastrointestinal , Humanos , Interleucina-17/química , National Institutes of Health (U.S.) , Neoplasias/tratamento farmacológico , Nicotinamida N-Metiltransferase/química , Medicina de Precisão , Estados Unidos
10.
Cancers (Basel) ; 12(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679769

RESUMO

Integrins are heterodimeric cell surface receptors composed of α and ß subunits that control adhesion, proliferation and gene expression. The integrin heterodimer binding to ligand reorganises the cytoskeletal networks and triggers multiple signalling pathways that can cause changes in cell cycle, proliferation, differentiation, survival and motility. In addition, integrins have been identified as targets for many different diseases, including cancer. Integrin crosstalk is a mechanism by which a change in the expression of a certain integrin subunit or the activation of an integrin heterodimer may interfere with the expression and/or activation of other integrin subunit(s) in the very same cell. Here, we review the evidence for integrin crosstalk in a range of cellular systems, with a particular emphasis on cancer. We describe the molecular mechanisms of integrin crosstalk, the effects of cell fate determination, and the contribution of crosstalk to therapeutic outcomes. Our intention is to raise awareness of integrin crosstalk events such that the contribution of the phenomenon can be taken into account when researching the biological or pathophysiological roles of integrins.

11.
Front Cell Dev Biol ; 8: 125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195252

RESUMO

Integrins are heterodimeric glycoproteins that bind cells to extracellular matrix. Upon integrin clustering, multimolecular integrin adhesion complexes (IACs) are formed, creating links to the cell cytoskeleton. We have previously observed decreased cell migration and increased sensitivity to microtubule (MT) poisons, paclitaxel and vincristine, in the melanoma cell line MDA-MB-435S upon transfection with integrin αV-specific siRNA, suggesting a link between adhesion and drug sensitivity. To elucidate the underlying mechanism, we determined αV-dependent changes in IAC composition. Using mass spectrometry (MS)-based proteomics, we analyzed the components of isolated IACs of MDA-MB-435S cells and two MDA-MB-435S-derived integrin αV-specific shRNA-expressing cell clones with decreased expression of integrin αV. MS analysis showed that cells preferentially use integrin αVß5 for the formation of IACs. The differential analysis between MDA-MB-435S cells and clones with decreased expression of integrin αV identified key components of integrin αVß5 adhesion complexes as talins 1 and 2, α-actinins 1 and 4, filamins A and B, plectin and vinculin. The data also revealed decreased levels of several components of the cortical microtubule stabilization complex, which recruits MTs to adhesion sites (notably liprins α and ß, ELKS, LL5ß, MACF1, KANK1, and KANK2), following αV knockdown. KANK2 knockdown in MDA-MB-435S cells mimicked the effect of integrin αV knockdown and resulted in increased sensitivity to MT poisons and decreased migration. Taken together, we conclude that KANK2 is a key molecule linking integrin αVß5 IACs to MTs, and enabling the actin-MT crosstalk that is important for both sensitivity to MT poisons and cell migration.

12.
Syst Appl Microbiol ; 42(2): 117-127, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30455068

RESUMO

Bacteria of the genus 'Candidatus Phytoplasma' are uncultivated intracellular plant pathogens transmitted by phloem-feeding insects. They have small genomes lacking genes for essential metabolites, which they acquire from either plant or insect hosts. Nonetheless, some phytoplasmas, such as 'Ca. P. solani', have broad plant host range and are transmitted by several polyphagous insect species. To understand better how these obligate symbionts can colonize such a wide range of hosts, the genome of 'Ca. P. solani' strain SA-1 was sequenced from infected periwinkle via a metagenomics approach. The de novo assembly generated a draft genome with 19 contigs totalling 821,322bp, which corresponded to more than 80% of the estimated genome size. Further completion of the genome was challenging due to the high occurrence of repetitive sequences. The majority of repeats consisted of gene arrangements characteristic of phytoplasma potential mobile units (PMUs). These regions showed variation in gene orders intermixed with genes of unknown functions and lack of similarity to other phytoplasma genes, suggesting that they were prone to rearrangements and acquisition of new sequences via recombination. The availability of this high-quality draft genome also provided a foundation for genome-scale genotypic analysis (e.g., average nucleotide identity and average amino acid identity) and molecular phylogenetic analysis. Phylogenetic analyses provided evidence of horizontal transfer for PMU-like elements from various phytoplasmas, including distantly related ones. The 'Ca. P. solani' SA-1 genome also contained putative secreted protein/effector genes, including a homologue of SAP11, found in many other phytoplasma species.


Assuntos
Ordem dos Genes , Genoma Bacteriano , Phytoplasma/genética , Catharanthus/microbiologia , DNA Bacteriano , Metagenômica , Filogenia
13.
Clin Epigenetics ; 10: 75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29991969

RESUMO

Background: Many genome- and epigenome-wide association studies (GWAS and EWAS) and studies of promoter methylation of candidate genes for inflammatory bowel disease (IBD) have demonstrated significant associations between genetic and epigenetic changes and IBD. Independent GWA studies have identified genetic variants in the BACH2, IL6ST, LAMB1, IKZF1, and MGAT3 loci to be associated with both IBD and immunoglobulin G (IgG) glycosylation. Methods: Using bisulfite pyrosequencing, we analyzed CpG methylation in promoter regions of these five genes from peripheral blood of several hundred IBD patients and healthy controls (HCs) from two independent cohorts, respectively. Results: We found significant differences in the methylation levels in the MGAT3 and BACH2 genes between both Crohn's disease and ulcerative colitis when compared to HC. The same pattern of methylation changes was identified for both genes in CD19+ B cells isolated from the whole blood of a subset of the IBD patients. A correlation analysis was performed between the MGAT3 and BACH2 promoter methylation and individual IgG glycans, measured in the same individuals of the two large cohorts. MGAT3 promoter methylation correlated significantly with galactosylation, sialylation, and bisecting GlcNAc on IgG of the same patients, suggesting that activity of the GnT-III enzyme, encoded by this gene, might be altered in IBD. The correlations between the BACH2 promoter methylation and IgG glycans were less obvious, since BACH2 is not a glycosyltransferase and therefore may affect IgG glycosylation only indirectly. Conclusions: Our results suggest that epigenetic deregulation of key glycosylation genes might lead to an increase in pro-inflammatory properties of IgG in IBD through a decrease in galactosylation and sialylation and an increase of bisecting GlcNAc on digalactosylated glycan structures. Finally, we showed that CpG methylation in the promoter of the MGAT3 gene is altered in CD3+ T cells isolated from inflamed mucosa of patients with ulcerative colitis from a third smaller cohort, for which biopsies were available, suggesting a functional role of this glyco-gene in IBD pathogenesis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Metilação de DNA , Imunoglobulina G/metabolismo , Doenças Inflamatórias Intestinais/genética , N-Acetilglucosaminiltransferases/genética , Estudos de Casos e Controles , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Doenças Inflamatórias Intestinais/imunologia , Masculino , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas , Estudos Prospectivos , Análise de Sequência de DNA
14.
Cancer Genomics Proteomics ; 14(5): 363-372, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28871003

RESUMO

BACKGROUND: The RAS association domain family protein 1a (RASSF1A) is a prominent tumor suppressor gene showing altered promoter methylation in testicular germ cell tumors (TGCT). RASSF1A promoter hypermethylation might represent an early event in TGCT tumorigenesis. We investigated whether the RASSF1A promoter methylation in peripheral blood of TGCT patients can be associated with testicular cancer risk. MATERIALS AND METHODS: Following a meta-analysis, we performed a cohort study including 32 testicular cancer patients and 32 healthy controls. Promoter methylation of the RASSF1A and O6-methylguanine-DNA-methyltransferase (MGMT) genes was analyzed using bisulfite pyrosequencing of DNA from peripheral blood. RESULTS: Meta-analysis showed an odds ratio (OR) of 7.69 for RASSF1A promoter methylation as a risk factor for TGCT. Cohort study found altered methylation of the RASSF1A promoter in blood of TGCT patients. Methylation was higher in TGCT patients before BEP chemotherapy. CONCLUSION: The meta-analysis indicates a role of the RASSF1A promoter hypermethylation from peripheral blood in TCGT. We confirmed that finding in our cohort study, which represents the first report of changed RASSF1A promoter methylation in peripheral blood TGCT.


Assuntos
Metilação de DNA/genética , Neoplasias Embrionárias de Células Germinativas/genética , Regiões Promotoras Genéticas , Neoplasias Testiculares/genética , Proteínas Supressoras de Tumor/genética , Sequência de Bases , Estudos de Coortes , Ilhas de CpG/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Predisposição Genética para Doença , Humanos , Masculino , Razão de Chances , Prognóstico , Viés de Publicação , Fatores de Risco
15.
Biochim Biophys Acta ; 1860(8): 1776-85, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26794090

RESUMO

BACKGROUND: Most eukaryotic proteins are modified by covalent addition of glycan molecules that considerably influence their function. Aberrant glycosylation is profoundly involved in malignant transformation, tumor progression and metastasis. Some glycan structures are tumor-specific and reflect disturbed glycan biosynthesis pathways. METHODS: We analyzed DNA methylation and expression of 86 glyco-genes in melanoma, hepatocellular, breast and cervical cancers using data from publicly available databases. We also analyzed methylation datasets without the available matching expression data for glyco-genes in lung cancer, and progression of melanoma into lymph node and brain metastases. RESULTS: Ten glyco-genes (GALNT3, GALNT6, GALNT7, GALNT14, MGAT3, MAN1A1, MAN1C1, ST3GAL2, ST6GAL1, ST8SIA3) showing changes in both methylation and expression in the same type of cancer belong to GalNAc transferases, GlcNAc transferases, mannosidases and sialyltransferases, which is in line with changes in glycan structures already reported in the same type of tumors. Some of those genes were additionally identified as potentially valuable for disease prognosis. The MGAT5B gene, so far identified as specifically expressed in brain, emerged as a novel candidate gene that is epigenetically dysregulated in different cancers other than brain cancer. We also report for the first time aberrant expression of the GALNT and MAN genes in cancer by aberrant promoter methylation. CONCLUSIONS: Aberrant expression of glyco-genes due to aberrant promoter methylation could be a way leading to characteristic glycosylation profiles commonly described in cancer. GENERAL SIGNIFICANCE: Methylation status in promoters of candidate glyco-genes might serve as prognostic markers for specific tumors and point to potential novel targets for epigenetic drugs. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.


Assuntos
Metilação de DNA , DNA de Neoplasias , Bases de Dados Genéticas , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias , Regiões Promotoras Genéticas , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Humanos , Masculino , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias/enzimologia , Neoplasias/genética
16.
Genome Biol ; 16: 16, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25622821

RESUMO

BACKGROUND: HOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma. RESULTS: We observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively. CONCLUSIONS: Based on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma.


Assuntos
Cromossomos Humanos Par 7/genética , Metilação de DNA/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Proteínas de Homeodomínio/genética , Células-Tronco Neoplásicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Ilhas de CpG , Variações do Número de Cópias de DNA/genética , Bases de Dados Genéticas , Epigênese Genética , Loci Gênicos , Genoma Humano , Histonas/metabolismo , Proteínas Homeobox A10 , Humanos , Modelos Lineares , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Transcriptoma/genética
17.
Biochem Biophys Res Commun ; 425(1): 64-9, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22820185

RESUMO

Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.


Assuntos
Proliferação de Células , Proteínas Hedgehog/metabolismo , Neoplasias do Colo do Útero/patologia , Caspase 3/metabolismo , Sobrevivência Celular , Feminino , Células HeLa , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Humanos , Ligantes , Piridinas/metabolismo , Pirimidinas/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
18.
Biochem Biophys Res Commun ; 386(3): 449-54, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19523451

RESUMO

Untangling the signaling pathways involved in endothelial cell biology is of central interest for the development of antiangiogenesis based therapies. Here we report that Wnt3a induces the proliferation and migration of HUVECs, but does not affect their survival. Wnt3a-induced proliferation was VEGFR signaling independent, but reduced upon CamKII inhibition. In a search for the downstream mediators of Wnt3a's effects on HUVEC biology, we found that Wnt3a treatment leads to phosphorylation of DVL3 and stabilization of beta-catenin. Moreover, under the same conditions we observed an upregulation in c-MYC, TIE-2 and GJA1 mRNA transcripts. Although treatment of HUVECs with Wnt5a induced DVL3 phosphorylation, we did not observe any of the other effects seen upon Wnt3a stimulation. Taken together, our data indicate that Wnt3a induces canonical and non-canonical Wnt signaling in HUVECs, and stimulates their proliferation and migration.


Assuntos
Movimento Celular , Proliferação de Células , Células Endoteliais/fisiologia , Proteínas Wnt/metabolismo , Conexina 43/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptores Frizzled/genética , Humanos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Receptor TIE-2/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Transcrição Gênica , Cordão Umbilical/citologia , Proteínas Wnt/genética , Proteínas Wnt/farmacologia , Proteína Wnt-5a , Proteína Wnt3 , Proteína Wnt3A
19.
Cancer Res ; 68(5): 1581-92, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18316624

RESUMO

Vascular endothelial growth factor receptors (VEGFR) have important roles in cancer, affecting blood and lymphatic vessel functionality as well as tumor cells themselves. We compared the efficacy of a VEGFR tyrosine kinase inhibitor, PTK787/ZK222584 (PTK/ZK), which targets the three VEGFRs, with blocking antibodies directed against VEGFR-2 (DC101) or VEGF-A (Pab85618) in a metastatic melanoma model. Although all inhibitors exerted comparable effects on primary tumor growth, only PTK/ZK significantly reduced lymph node metastasis formation. A comparable decrease in lymphatic vessel density following blockade of VEGFR-2 (DC101) or the three VEGFRs (PTK/ZK) was observed in the metastases. However, the functionality of lymphatics surrounding the primary tumor was more significantly disrupted by PTK/ZK, indicating the importance of multiple VEGFRs in the metastatic process. The antimetastatic properties of PTK/ZK were confirmed in a breast carcinoma model. B16/BL6 tumor cells express VEGF ligands and their receptors. Blockade of a VEGFR-1 autocrine loop with PTK/ZK inhibited tumor cell migration. Furthermore, the tumor cells also showed enhanced sensitivity to platinum-based chemotherapy in combination with PTK/ZK, indicating that autocrine VEGFRs are promoting tumor cell migration and survival. In summary, our results suggest that, in addition to blocking angiogenesis, combined inhibition of the three VEGFRs may more efficiently target other aspects of tumor pathophysiology, including lymphatic vessel functionality, tumor cell dissemination, survival pathways, and response to chemotherapeutic compounds.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Metástase Linfática , Melanoma Experimental , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...