Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37444578

RESUMO

Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.

2.
Cancers (Basel) ; 13(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34298809

RESUMO

Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.

3.
Cancers (Basel) ; 13(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205080

RESUMO

Therapeutic targeting of stem cells needs to be strategically developed to control tumor growth and prevent metastatic burden successfully. Breast cancer presents a unique clinical problem because of the variety of cellular subtypes present, including cancer stem cells (CSCs). The development of 3D stem-like properties of human breast tumor spheroids in stem cell factor conditioned media was investigated in orthotopic xenografts for enhanced tumorgenicity in the athymic nude rat model. MCF-7, ZR-75-1, and MDA-MB-231 breast cancer cell lines were cultured in serum-free, stem cell factor-supplemented medium under non-adherent conditions and passaged to generate 3rd generation spheroids. The spheroids were co-cultured with fetal lung fibroblast (FLF) cells before orthotopic heterotransplantation into the mammary fat pads of athymic nude rats. Excised xenografts were assessed histologically by H&E staining and immunohistochemistry for breast cancer marker (ERB1), proliferation marker (Ki67), mitotic marker (pHH3), hypoxia marker (HIF-2α), CSC markers (CD47, CD44, CD24, and CD133), and vascularization markers (CD31, CD34). Breast cancer cells cultured in stem cell factor supplemented medium generated 3D spheroids exhibited increased stem-like characteristics. The 3D stem-like spheroids co-cultured with FLF as supporting stroma reproducibly and efficiently established orthotopic breast cancer xenografts in the athymic nude rat.

4.
Drug Des Devel Ther ; 14: 1995-2019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32546966

RESUMO

INTRODUCTION: Targeted multimodal approaches need to be strategically developed to control tumour growth and prevent metastatic burden successfully. Breast cancer presents a unique clinical problem because of the variety of cellular subtypes that arise. The tumour stage and cellular subtypes often dictate the appropriate clinical treatment regimen. Also, the development of chemoresistance is a common clinical challenge with breast cancer. Higher doses and additional drug agents can produce additional adverse effects leading to a more aggressive malignancy. Acetylsalicylic acid (ASA), metformin (Met), and oseltamivir phosphate (OP) were investigated for their efficacy to sensitize MDA-MB-231 triple-negative breast cancer and its tamoxifen (Tmx) resistant variant (MDA-MB-231-TmxR) together in combination with Tmx treatment. METHODS: Microscopic imaging, the formation of 3D multicellular tumour spheroids, immunocytochemistry, flow cytometry, Annexin V Assay, Caspase 3/7 Apoptosis Assay, tube formation assay and analysis, and WST-1 cell viability assay evaluated the formation of MCTS, morphologic changes, cell viability, apoptosis activity and the expression levels of ALDH1A1, CD44 and CD24 on the cell surface, MDA-MB231 triple-negative breast cancer, tamoxifen (Tmx) resistant variant (MDA-MB-231-TmxR). RESULTS: The results using a triple combination of ASA, Met and OP on MDA-MB-231 and MDA-MB-231-TmxR cells and their matrix-free 3D multicellular tumour spheroids (MCTS) formed by using the cyclic Arg-Gly-Asp-D-Phe-Lys peptide modified with 4-carboxybutyl-triphenylphosphonium bromide (cyclo-RGDfK(TPP)) peptide method demonstrate a consistent and significant decrease in cell and tumour spheroid viability and volume with increased apoptotic activity, and increased sensitivity to Tmx therapy. Tmx treatment of MDA-MB-231 cells in combination with ASA, Met and OP markedly reduced the CD44/CD24 ratio by 6.5-fold compared to the untreated control group. Tmx treatment of MDA-MB-231-TmxR cells in combination with ASA, Met and OP markedly reduced the ALDH1A1 by 134-fold compared to the same treatment for the parental cell line. Also, the triple combination treatment of ASA, Met, and OP inhibited vasculogenic endothelial cell tube formation and induced endothelial cell apoptosis. CONCLUSION: For the first time, the findings demonstrate that repurposing ASA, Met, and OP provides a novel and promising targeted multimodal approach in the treatment of triple-negative breast cancer and its chemoresistant variant.


Assuntos
Antineoplásicos/farmacologia , Aspirina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Metformina/farmacologia , Oseltamivir/farmacologia , Esferoides Celulares/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Família Aldeído Desidrogenase 1/antagonistas & inibidores , Família Aldeído Desidrogenase 1/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Antígeno CD24/antagonistas & inibidores , Antígeno CD24/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Receptores de Hialuronatos/antagonistas & inibidores , Receptores de Hialuronatos/metabolismo , Retinal Desidrogenase/antagonistas & inibidores , Retinal Desidrogenase/metabolismo , Tamoxifeno/farmacologia , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas
5.
Cancers (Basel) ; 11(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683806

RESUMO

Nanomedicine as a multimodality treatment of cancer utilizes the advantages of nanodelivery systems of drugs. They are superior to the clinical administration of different therapeutic agents in several aspects, including simultaneous delivery of drugs to the active site, precise ratio control of the loading drugs and overcoming multidrug resistance. The role of nanopolymer size and structural shape on the internalization process and subsequent intracellular toxicity is limited. Here, the size and shape dependent mechanism of a functionalized copolymer was investigated using folic acid (FA) covalently bonded to the copolymer poly (styrene-alt-maleic anhydride) (SMA) on its hydrophilic exterior via a biological linker 2,4-diaminobutyric acid (DABA) to target folic acid receptors (FR) overly expressed on cancer cells actively. We recently reported that unloaded FA-DABA-SMA copolymers significantly reduced cancer cell viability, suggesting a secondary therapeutic mechanism of action of the copolymer carrier post-internalization. Here, we investigated the size and shape dependent secondary mechanism of unloaded 350 kDa and 20 kDa FA-DABA-SMA. The 350 kDa and 20 kDa copolymers actively target folic acid receptors (FR) to initialize internationalization, but only the large size and sheet shaped copolymer disables cell division by intracellular disruptions of essential oncogenic proteins including p53, STAT-3 and c-Myc. Furthermore, the 350 kDa FA-DABA-SMA activates early and late apoptotic events in both PANC-1 and MDA-MB-231 cancer cells. These findings indicate that the large size and structural sheet shape of the 350 kDa FA-DABA-SMA copolymer facilitate multimodal tumor targeting mechanisms together with the ability to internalize hydrophobic chemotherapeutics to disable critical oncogenic proteins controlling cell division and to induce apoptosis. The significance of these novel findings reveals copolymer secondary cellular targets and therapeutic actions that extend beyond the direct delivery of chemotherapeutics. This report offers novel therapeutic insight into the intracellular activity of copolymers critically dependent on the size and structural shape of the nanopolymers.

6.
Adv Exp Med Biol ; 1152: 131-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456183

RESUMO

Metastatic breast cancer is the most common cancer in women after skin cancer, with a 5-year survival rate of 26%. Due to its high prevalence, it is important to develop therapies that go beyond those that just provide palliation of symptoms. Currently, there are several types of therapies available to help treat breast cancer including: hormone therapy, immunotherapy, and chemotherapy, with each one depending on both the location of metastases and morphological characteristics. Although technological and scientific advancements continue to pave the way for improved therapies that adopt a targeted and personalized approach, the fact remains that the outcomes of current first-line therapies have not significantly improved over the last decade. In this chapter, we review the current understanding of the pathology of metastatic breast cancer before thoroughly discussing local and systemic therapies that are administered to patients diagnosed with metastatic breast cancer. In addition, our review will also elaborate on the genetic profile that is characteristic of breast cancer as well as the local tumor microenvironment that shapes and promotes tumor growth and cancer progression. Lastly, we will present promising novel therapies being developed for the treatment of this disease.


Assuntos
Neoplasias da Mama/terapia , Metástase Neoplásica/terapia , Antineoplásicos/uso terapêutico , Feminino , Humanos , Imunoterapia , Microambiente Tumoral
7.
J Oncol ; 2019: 4508794, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941175

RESUMO

Cancer immunotherapy is a promising innovative treatment for many forms of cancer, particularly melanoma. Although immunotherapy has been shown to be efficacious, patient response rates vary and, more often than not, only a small subset of the patients within a large cohort respond favourably to the treatment. This issue is particularly concerning and becomes a challenge of immunotherapy to improve the effectiveness and patient response rates. Here, we review the specific types of available immunotherapy options, their proposed mechanism(s) of action, and the reasons why the patient response to this treatment is variable. The potential favourable options to improve response rates to immunotherapy will be discussed with an emphasis on adopting a multimodal approach on the novel role that the gut microbiota may play in modulating the efficacy of cancer immunotherapy.

8.
Nanomaterials (Basel) ; 8(8)2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072655

RESUMO

Engineering of a "smart" drug delivery system to specifically target tumour cells has been at the forefront of cancer research, having been engineered for safer, more efficient and effective use of chemotherapy for the treatment of cancer. However, selective targeting and choosing the right cancer surface biomarker are critical for a targeted treatment to work. Currently, the available delivery systems use a two-dimensional monolayer of cancer cells to test the efficacy of the drug delivery system, but designing a "smart" drug delivery system to be specific for a tumour in vivo and to penetrate the inner core remains a major design challenge. These challenges can be overcome by using a study model that integrates the three-dimensional aspect of a tumour in a culture system. Here, we tested the efficacy of a functionalized folic acid-conjugated amphiphilic alternating copolymer poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable linker 2,4-diaminobutyric acid (DABA) to specifically target and penetrate the inner core of three-dimensional avascular human pancreatic and breast tumour spheroids in culture. The copolymer was quantitatively analyzed for its hydrophobic drug encapsulation efficiency using three different chemical drug structures with different molecular weights. Their release profiles and tumour targeting properties at various concentrations and pH environments were also characterized. Using the anticancer drug curcumin and two standard clinical chemotherapeutic hydrophobic drugs, paclitaxel and 5-fluorouracil, we tested the ability of FA-DABA-SMA nanoparticles to encapsulate the differently sized drugs and deliver them to kill monolayer pancreatic cancer cells using the WST-1 cell proliferation assay. The findings of this study revealed that the functionalized folic acid-conjugated amphiphilic alternating copolymer shows unique properties as an active "smart" tumor-targeting drug delivery system with the ability to internalize hydrophobic drugs and release the chemotherapeutics for effective killing of cancer cells. The novelty of the study is the first to demonstrate a functionalized "smart" drug delivery system encapsulated with a hydrophobic drug effectively targeting and penetrating the inner core of pancreatic and breast cancer spheroids and reducing their volumes in a dose- and time-dependent manner.

9.
Drug Healthc Patient Saf ; 10: 45-66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928146

RESUMO

With the proposed Canadian July 2018 legalization of marijuana through the Cannabis Act, a thorough critical analysis of the current trials on the efficacy of medicinal marijuana (MM) as a treatment option is necessary. This review is particularly important for primary care physicians whose patients may be interested in using MM as an alternative therapy. In response to increased interest in MM, Health Canada released a document in 2013 for general practitioners (GPs) as an educational tool on the efficacy of MM in treating some chronic and acute conditions. Although additional studies have filled in some of the gaps since the release of the Health Canada document, conflicting and inconclusive results continue to pose a challenge for physicians. This review aims to supplement the Health Canada document by providing physicians with a critical yet concise update on the recent advancements made regarding the efficacy of MM as a potential therapeutic option. An update to the literature of 2013 is important given the upcoming changes in legislation on the use of marijuana. Also, we briefly highlight the current recommendations provided by Canadian medical colleges on the parameters that need to be considered prior to authorizing MM use, routes of administration as well as a general overview of the endocannabinoid system as it pertains to cannabis. Lastly, we outline the appropriate medical conditions for which the authorization of MM may present as a practical alternative option in improving patient outcomes as well as individual considerations of which GPs should be mindful. The purpose of this paper is to offer physicians an educational tool that provides a necessary, evidence-based analysis of the therapeutic potential of MM and to ensure physicians are making decisions on the therapeutic use of MM in good faith.

10.
Int J Mol Sci ; 19(2)2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29462993

RESUMO

Insulin signaling, as mediated through the insulin receptor (IR), plays a critical role in metabolism. Aberrations in this signaling cascade lead to several pathologies, the majority of which are classified under the umbrella term "metabolic syndrome". Although many of these pathologies are associated with insulin resistance, the exact mechanisms are not well understood. One area of current interest is the possibility of G-protein-coupled receptors (GPCRs) influencing or regulating IR signaling. This concept is particularly significant, because GPCRs have been shown to participate in cross-talk with the IR. More importantly, GPCR signaling has also been shown to preferentially regulate specific downstream signaling targets through GPCR agonist bias. A novel study recently demonstrated that this GPCR-biased agonism influences the activity of the IR without the presence of insulin. Although GPCR-IR cross-talk has previously been established, the notion that GPCRs can regulate the activation of the IR is particularly significant in relation to metabolic syndrome and other pathologies that develop as a result of alterations in IR signaling. As such, we aim to provide an overview of the physiological and pathophysiological roles of the IR within metabolic syndrome and its related pathologies, including cardiovascular health, gut microflora composition, gastrointestinal tract functioning, polycystic ovarian syndrome, pancreatic cancer, and neurodegenerative disorders. Furthermore, we propose that the GPCR-biased agonism may perhaps mediate some of the downstream signaling effects that further exacerbate these diseases for which the mechanisms are currently not well understood.


Assuntos
Insulina/genética , Síndrome Metabólica/genética , Receptor de Insulina/genética , Receptores Acoplados a Proteínas G/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Microbioma Gastrointestinal/genética , Humanos , Insulina/metabolismo , Síndrome Metabólica/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptor Cross-Talk , Receptor de Insulina/agonistas , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-28280388

RESUMO

One of the primary challenges in developing effective therapies for malignant tumors is the specific targeting of a heterogeneous cancer cell population within the tumor. The cancerous tumor is made up of a variety of distinct cells with specialized receptors and proteins that could potentially be viable targets for drugs. In addition, the diverse signals from the local microenvironment may also contribute to the induction of tumor growth and metastasis. Collectively, these factors must be strategically studied and targeted in order to develop an effective treatment protocol. Targeted multimodal approaches need to be strategically studied in order to develop a treatment protocol that is successful in controlling tumor growth and preventing metastatic burden. Breast cancer, in particular, presents a unique problem because of the variety of subtypes of cancer that can arise and the multiple drug targets that could be exploited. For example, the tumor stage and subtypes often dictate the appropriate treatment regimen. Alternate multimodal therapies should consider the importance of time-dependent drug administration, as well as targeting the local and systemic tumor environment. Many reviews and papers have briefly touched on the clinical implications of this cellular heterogeneity; however, there has been very little discussion on the development of study models that reflect this diversity and on multimodal therapies that could target these subpopulations. Here, we summarize the current understanding of the origins of intratumoral heterogeneity in breast cancer subtypes, and its implications for tumor progression, metastatic potential, and treatment regimens. We also discuss the advantages and disadvantages of utilizing specific breast cancer models for research, including in vitro monolayer systems and three-dimensional mammospheres, as well as in vivo murine models that may have the capacity to encompass this heterogeneity. Lastly, we summarize some of the current advancements in the development of multitarget therapeutics that have shown promising results in clinical and preclinical studies when used alone or in combination with traditional regimens of surgery, chemotherapy, and/or radiation.

12.
Stem Cell Rev Rep ; 13(4): 513-531, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28239758

RESUMO

The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.


Assuntos
Diferenciação Celular , Matriz Extracelular/química , Rim/química , Rim/citologia , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo
13.
Stem Cell Reports ; 4(3): 419-30, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660407

RESUMO

Efficient differentiation of pluripotent cells to proximal and distal lung epithelial cell populations remains a challenging task. The 3D extracellular matrix (ECM) scaffold is a key component that regulates the interaction of secreted factors with cells during development by often binding to and limiting their diffusion within local gradients. Here we examined the role of the lung ECM in differentiation of pluripotent cells in vitro and demonstrate the robust inductive capacity of the native lung matrix alone. Extended culture of stem cell-derived definitive endoderm on decellularized lung scaffolds in defined, serum-free medium resulted in differentiation into mature airway epithelia, complete with ciliated cells, club cells, and basal cells with morphological and functional similarities to native airways. Heparitinase I, but not chondroitinase ABC, treatment of scaffolds revealed that the differentiation achieved is dependent on heparan sulfate proteoglycans and its bound factors remaining on decellularized scaffolds.


Assuntos
Células Epiteliais Alveolares/citologia , Diferenciação Celular , Endoderma/citologia , Pulmão/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Linhagem da Célula/genética , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...