Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639864

RESUMO

Alzheimer's, Parkinson's, and Huntington's are some of the most common neurological disorders, which affect millions of people worldwide. Although there have been many treatments for these diseases, there are still no effective treatments to treat or completely stop these disorders. Perhaps the lack of proper treatment for these diseases can be related to various reasons, but the poor results related to recent clinical research also prompted doctors to look for new treatment approaches. In this regard, various researchers from all over the world have provided many new treatments, one of which is CRISPR/Cas9. Today, the CRISPR/Cas9 system is mostly used for genetic modifications in various species. In addition, by using the abilities available in the CRISPR/Cas9 system, researchers can either remove or modify DNA sequences, which in this way can establish a suitable and useful treatment method for the treatment of genetic diseases that have undergone mutations. We conducted a non-systematic review of articles and study results from various databases, including PubMed, Medline, Web of Science, and Scopus, in recent years. and have investigated new treatment methods in neurodegenerative diseases with a focus on Alzheimer's disease. Then, in the following sections, the treatment methods were classified into three groups: anti-tau, anti-amyloid, and anti-APOE regimens. Finally, we discussed various applications of the CRISPR/Cas-9 system in Alzheimer's disease. Today, using CRISPR/Cas-9 technology, scientists create Alzheimer's disease models that have a more realistic phenotype and reveal the processes of pathogenesis; following the screening of defective genes, they establish treatments for this disease.

2.
Dev Psychobiol ; 65(6): e22411, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37607889

RESUMO

Prenatal manipulations can lead to neurobehavioral changes in the offspring. In this study, individual and combined effects of forced exercise and zinc supplementation during pregnancy on prenatally restraint stress (PRS)-induced behavioral impairments, neuro-inflammatory responses, and oxidative stress have been investigated in adolescent female rat offspring. Pregnant rats were divided into five groups: control; restraint stress (RS); RS + exercise stress (RS + ES), RS + zinc supplementation (RS + Zn); and RS + ES + Zn. All the pregnant rats (except control) were exposed to RS from gestational days 15 to 19. Pregnant rats in ES groups were subjected to forced treadmill exercise (30 min/daily), and in Zn groups to zinc sulfate (30 mg/kg/orally), throughout the pregnancy. At postnatal days 25-27, anxiety-like and stress-coping behaviors were recorded, and the gene expressions of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) and the concentration of total antioxidant capacity were measured in the prefrontal cortex. PRS significantly enhanced anxiety, generated passive coping behaviors, increased IL-1ß and TNF-α expression, and decreased the antioxidant capacity. ES potentiated while zinc reversed PRS-induced behavioral impairments. Prenatal zinc also restored the anti-inflammatory and antioxidant capacity but had no effect on additive responses imposed by the combination of RS and ES. Suppression of PRS-induced behavioral and neurobiological impairments by zinc suggests the probable clinical importance of zinc on PRS-induced changes on child temperament.


Assuntos
Antioxidantes , Zinco , Feminino , Gravidez , Animais , Ratos , Zinco/farmacologia , Fator de Necrose Tumoral alfa , Adaptação Psicológica , Suplementos Nutricionais
3.
J Trace Elem Med Biol ; 72: 126985, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35429747

RESUMO

Since there's been an upsurge in people with diabetes or pre-diabetes conditions, many studies have been conducted to evaluate approaches for reducing the complications of diabetes. One of the most common therapeutic elements suggested for this purpose is zinc (Zn). Zn has long been shown to positively improve complications of both type 1 and type 2 diabetes. This review aims to provide comprehensive information about the influence of Zn on the various signaling pathways in multiple tissues with diabetic conditions, with great attention to the treatment period and effective dose of Zn.


Assuntos
Diabetes Mellitus Tipo 2 , Zinco , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Transdução de Sinais , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...