Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-520843

RESUMO

Type 1 interferon (IFN-I) response is the first line of host defense against invading viruses. In the absence of definite mouse models, the role of IFN-I in SARS-CoV-2 infections remained to be perplexing. Here, we developed two mouse models, one with constitutively high IFN-I response (hACE2; Irgm1-/-) and the other with dampened IFN-I response (hACE2; Ifnar1-/-) to comprehend the role of IFN-I response during SARS-CoV-2 invasion. We found that hACE2; Irgm1-/- mice were resistant to lethal SARS-CoV-2 infection with substantially reduced cytokine storm and immunopathology. In striking contrast, a severe SARS-CoV-2 infection along with immune cells infiltration, inflammatory response, and enhanced pathology was observed in the lungs of hACE2; Ifnar1-/- mice. Additionally, hACE2; Ifnar1-/- mice were highly susceptible to SARS-CoV-2 neuroinvasion in the brain accompanied by immune cell infiltration, microglia/astrocytes activation, cytokine response, and demyelination of neurons. The hACE2; Irgm1-/- Ifnar1-/- double knockout mice or hACE2; Irgm1-/- mice treated with STING or RIPK2 pharmacological inhibitors displayed loss of the protective phenotypes observed in hACE2; Irgm1-/- mice suggesting that heightened IFN-I response accounts for the observed immunity. Taken together, we explicitly demonstrate that IFN-I protects from lethal SARS-CoV-2 infection, and Irgm1 (IRGM) could be an excellent therapeutic target. GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=133 SRC="FIGDIR/small/520843v1_ufig1.gif" ALT="Figure 1"> View larger version (51K): org.highwire.dtl.DTLVardef@1fda6daorg.highwire.dtl.DTLVardef@1d573dborg.highwire.dtl.DTLVardef@a96318org.highwire.dtl.DTLVardef@a8cd68_HPS_FORMAT_FIGEXP M_FIG C_FIG

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...