Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136576

RESUMO

Melanoma-associated antigen A (MAGEA) subfamily proteins are normally expressed in testis and/or placenta. However, aberrant expression is detected in the tumour cells of multiple types of human cancer. MAGEA expression is mainly observed in cancers that have acquired malignant phenotypes, invasiveness and metastasis, and the expression of MAGEA family proteins has been linked to poor prognosis in cancer patients. All MAGE proteins share the common MAGE homology domain (MHD) which encompasses up to 70% of the protein; however, the areas flanking the MHD region vary between family members and are poorly conserved. To investigate the molecular basis of MAGEA10 expression and anomalous mobility in gel, deletion and point-mutation, analyses of the MAGEA10 protein were performed. Our data show that the intrinsically disordered N-terminal domain and, specifically, the first seven amino acids containing a unique linear motif, PRAPKR, are responsible for its expression, aberrant migration in SDS-PAGE and nuclear localisation. The aberrant migration in gel and nuclear localisation are not related to each other. Hiding the N-terminus with an epitope tag strongly affected its mobility in gel and expression in cells. Our results suggest that the intrinsically disordered domains flanking the MHD determine the unique properties of individual MAGEA proteins.


Assuntos
Neoplasias , Testículo , Masculino , Humanos
2.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069064

RESUMO

Extracellular vesicles (EVs) are valued candidates for the development of new tools for medical applications. Vesicles carrying melanoma-associated antigen A (MAGEA) proteins, a subfamily of cancer-testis antigens, are particularly promising tools in the fight against cancer. Here, we have studied the biophysical and chemical properties of MAGEA4-EVs and show that they are stable under common storage conditions such as keeping at +4 °C and -80 °C for at least 3 weeks after purification. The MAGEA4-EVs can be freeze-thawed two times without losing MAGEA4 in detectable quantities. The attachment of MAGEA4 to the surface of EVs cannot be disrupted by high salt concentrations or chelators, but the vesicles are sensitive to high pH. The MAGEA4 protein can bind to the surface of EVs in vitro, using robust passive incubation. In addition, EVs can be loaded with recombinant proteins fused to the MAGEA4 open reading frame within the cells and also in vitro. The high stability of MAGEA4-EVs ensures their potential for the development of EV-based anti-cancer applications.


Assuntos
Antígenos de Neoplasias/química , Vesículas Extracelulares/química , Proteínas de Neoplasias/química , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/isolamento & purificação , Antígenos de Neoplasias/metabolismo , Armazenamento de Medicamentos , Vesículas Extracelulares/metabolismo , Congelamento , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/isolamento & purificação , Proteínas de Neoplasias/metabolismo , Octoxinol/química , Proteínas Recombinantes/química , Sais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...