Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895329

RESUMO

Tau aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. There are disease-causing variants of the tau-encoding gene, MAPT, and the presence of tau aggregates is highly correlated with disease progression. However, the molecular mechanisms linking pathological tau to neuronal dysfunction are not well understood due to our incomplete understanding of the normal functions of tau in development and aging and how these processes change in the context of causal disease variants of tau. To address these questions in an unbiased manner, we conducted multi-omic characterization of iPSC-derived neurons harboring the MAPT V337M mutation. RNA-seq and phosphoproteomics revealed that both V337M tau and tau knockdown consistently perturbed levels of transcripts and phosphorylation of proteins related to axonogenesis or axon morphology. Surprisingly, we found that neurons with V337M tau had much lower tau phosphorylation than neurons with WT tau. We conducted functional genomics screens to uncover regulators of tau phosphorylation in neurons and found that factors involved in axonogenesis modified tau phosphorylation in both MAPT WT and MAPT V337M neurons. Intriguingly, the p38 MAPK pathway specifically modified tau phosphorylation in MAPT V337M neurons. We propose that V337M tau might perturb axon morphology pathways and tau hypophosphorylation via a "loss of function" mechanism, which could contribute to previously reported cognitive changes in preclinical MAPT gene carriers.

2.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38582079

RESUMO

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Tauopatias , Proteínas tau , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/genética , Diferenciação Celular , Mutação , Autofagia
3.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37398204

RESUMO

A hallmark of age-associated neurodegenerative diseases is the aggregation of proteins. Aggregation of the protein tau defines tauopathies, which include Alzheimer's disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to the accumulation of tau aggregates, and subsequent dysfunction and death. The mechanisms underlying cell type-selective vulnerability are unknown. To systematically uncover the cellular factors controlling the accumulation of tau aggregates in human neurons, we conducted a genome-wide CRISPRi-based modifier screen in iPSC-derived neurons. The screen uncovered expected pathways, including autophagy, but also unexpected pathways including UFMylation and GPI anchor synthesis, that control tau oligomer levels. We identify the E3 ubiquitin ligase CUL5 as a tau interactor and potent modifier of tau levels. In addition, disruption of mitochondrial function increases tau oligomer levels and promotes proteasomal misprocessing of tau. These results reveal new principles of tau proteostasis in human neurons and pinpoint potential therapeutic targets for tauopathies.

4.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37163077

RESUMO

The sheer complexity of the brain has complicated our ability to understand its cellular mechanisms in health and disease. Genome-wide association studies have uncovered genetic variants associated with specific neurological phenotypes and diseases. In addition, single-cell transcriptomics have provided molecular descriptions of specific brain cell types and the changes they undergo during disease. Although these approaches provide a giant leap forward towards understanding how genetic variation can lead to functional changes in the brain, they do not establish molecular mechanisms. To address this need, we developed a 3D co-culture system termed iAssembloids (induced multi-lineage assembloids) that enables the rapid generation of homogenous neuron-glia spheroids. We characterize these iAssembloids with immunohistochemistry and single-cell transcriptomics and combine them with large-scale CRISPRi-based screens. In our first application, we ask how glial and neuronal cells interact to control neuronal death and survival. Our CRISPRi-based screens identified that GSK3ß inhibits the protective NRF2-mediated oxidative stress response in the presence of reactive oxygen species elicited by high neuronal activity, which was not previously found in 2D monoculture neuron screens. We also apply the platform to investigate the role of APOE-ε4, a risk variant for Alzheimer's Disease, in its effect on neuronal survival. This platform expands the toolbox for the unbiased identification of mechanisms of cell-cell interactions in brain health and disease.

5.
Nat Cell Biol ; 24(1): 24-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027731

RESUMO

SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted a targeted CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. Here we show that the protein BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human cells, including those of human nasal epithelia. Moreover, pharmacological BRD2 inhibition with the drug ABBV-744 inhibited SARS-CoV-2 replication in Syrian hamsters. We also found that BRD2 controls transcription of several other genes induced upon SARS-CoV-2 infection, including the interferon response, which in turn regulates the antiviral response. Together, our results pinpoint BRD2 as a potent and essential regulator of the host response to SARS-CoV-2 infection and highlight the potential of BRD2 as a therapeutic target for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Células Epiteliais/virologia , SARS-CoV-2/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
6.
Cell ; 184(9): 2503-2519.e17, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33838111

RESUMO

A general approach for heritably altering gene expression has the potential to enable many discovery and therapeutic efforts. Here, we present CRISPRoff-a programmable epigenetic memory writer consisting of a single dead Cas9 fusion protein that establishes DNA methylation and repressive histone modifications. Transient CRISPRoff expression initiates highly specific DNA methylation and gene repression that is maintained through cell division and differentiation of stem cells to neurons. Pairing CRISPRoff with genome-wide screens and analysis of chromatin marks establishes rules for heritable gene silencing. We identify single guide RNAs (sgRNAs) capable of silencing the large majority of genes including those lacking canonical CpG islands (CGIs) and reveal a wide targeting window extending beyond annotated CGIs. The broad ability of CRISPRoff to initiate heritable gene silencing even outside of CGIs expands the canonical model of methylation-based silencing and enables diverse applications including genome-wide screens, multiplexed cell engineering, enhancer silencing, and mechanistic exploration of epigenetic inheritance.


Assuntos
Sistemas CRISPR-Cas , Reprogramação Celular , Epigênese Genética , Epigenoma , Edição de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Diferenciação Celular , Ilhas de CpG , Metilação de DNA , Inativação Gênica , Código das Histonas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional
7.
bioRxiv ; 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-33501440

RESUMO

SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted a targeted CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. We found that the protein BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human cells, including those of human nasal epithelia. Moreover, pharmacological BRD2 inhibition with the drug ABBV-744 inhibited SARS-CoV-2 replication in Syrian hamsters. We also found that BRD2 controls transcription of several other genes induced upon SARS-CoV-2 infection, including the interferon response, which in turn regulates the antiviral response. Together, our results pinpoint BRD2 as a potent and essential regulator of the host response to SARS-CoV-2 infection and highlight the potential of BRD2 as a novel therapeutic target for COVID-19.

8.
J Biol Chem ; 295(33): 11410-11417, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32527724

RESUMO

The health of a cell depends on accurate translation and proper protein folding, whereas misfolding can lead to aggregation and disease. The first opportunity for a protein to fold occurs during translation, when the ribosome and surrounding environment can affect the nascent chain energy landscape. However, quantifying these environmental effects is challenging because ribosomal proteins and rRNA preclude most spectroscopic measurements of protein energetics. Here, we have applied two gel-based approaches, pulse proteolysis and force-profile analysis, to probe the folding and unfolding pathways of RNase H (RNH) nascent chains stalled on the prokaryotic ribosome in vitro We found that ribosome-stalled RNH has an increased unfolding rate compared with free RNH. Because protein stability is related to the ratio of the unfolding and folding rates, this increase completely accounts for the observed change in protein stability and indicates that the folding rate is unchanged. Using arrest peptide-based force-profile analysis, we assayed the force generated during the folding of RNH on the ribosome. Surprisingly, we found that population of the RNH folding intermediate is required to generate sufficient force to release a stall induced by the SecM stalling sequence and that readthrough of SecM directly correlates with the stability of the RNH folding intermediate. Together, these results imply that the folding pathway of RNH is unchanged on the ribosome. Furthermore, our findings indicate that the ribosome promotes RNH unfolding while the nascent chain is proximal to the ribosome, which may limit the deleterious effects of RNH misfolding and assist in folding fidelity.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Dobramento de Proteína , Ribonuclease H/química , Estabilidade Enzimática , Escherichia coli/enzimologia , Desdobramento de Proteína , Proteólise , Ribossomos/química
9.
IUCrJ ; 7(Pt 2): 306-323, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148858

RESUMO

Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme.

10.
Science ; 366(6468): 971-977, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31672913

RESUMO

The tumor suppressor folliculin (FLCN) enables nutrient-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) protein kinase via its guanosine triphosphatase (GTPase) activating protein (GAP) activity toward the GTPase RagC. Concomitant with mTORC1 inactivation by starvation, FLCN relocalizes from the cytosol to lysosomes. To determine the lysosomal function of FLCN, we reconstituted the human lysosomal FLCN complex (LFC) containing FLCN, its partner FLCN-interacting protein 2 (FNIP2), and the RagAGDP:RagCGTP GTPases as they exist in the starved state with their lysosomal anchor Ragulator complex and determined its cryo-electron microscopy structure to 3.6 angstroms. The RagC-GAP activity of FLCN was inhibited within the LFC, owing to displacement of a catalytically required arginine in FLCN from the RagC nucleotide. Disassembly of the LFC and release of the RagC-GAP activity of FLCN enabled mTORC1-dependent regulation of the master regulator of lysosomal biogenesis, transcription factor E3, implicating the LFC as a checkpoint in mTORC1 signaling.


Assuntos
Lisossomos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Lisossomos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Transdução de Sinais
11.
Sci Adv ; 4(5): eaas9098, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29854950

RESUMO

Precise protein folding is essential for the survival of all cells, and protein misfolding causes a number of diseases that lack effective therapies, yet the general principles governing protein folding in the cell remain poorly understood. In vivo, folding can begin cotranslationally and protein quality control at the ribosome is essential for cellular proteostasis. We directly characterize and compare the refolding and cotranslational folding trajectories of the protein HaloTag. We introduce new techniques for both measuring folding kinetics and detecting the conformations of partially folded intermediates during translation in real time. We find that, although translation does not affect the rate-limiting step of HaloTag folding, a key aggregation-prone intermediate observed during in vitro refolding experiments is no longer detectable. This rerouting of the folding pathway increases HaloTag's folding efficiency and may serve as a general chaperone-independent mechanism of quality control by the ribosome.


Assuntos
Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Redobramento de Proteína , Proteínas/química , Cinética
12.
Proc Natl Acad Sci U S A ; 113(47): 13402-13407, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821780

RESUMO

Accurate protein folding is essential for proper cellular and organismal function. In the cell, protein folding is carefully regulated; changes in folding homeostasis (proteostasis) can disrupt many cellular processes and have been implicated in various neurodegenerative diseases and other pathologies. For many proteins, the initial folding process begins during translation while the protein is still tethered to the ribosome; however, most biophysical studies of a protein's energy landscape are carried out in isolation under idealized, dilute conditions and may not accurately report on the energy landscape in vivo. Thus, the energy landscape of ribosome nascent chains and the effect of the tethered ribosome on nascent chain folding remain unclear. Here we have developed a general assay for quantitatively measuring the folding stability of ribosome nascent chains, and find that the ribosome exerts a destabilizing effect on the polypeptide chain. This destabilization decreases as a function of the distance away from the peptidyl transferase center. Thus, the ribosome may add an additional layer of robustness to the protein-folding process by avoiding the formation of stable partially folded states before the protein has completely emerged from the ribosome.


Assuntos
Ribossomos/metabolismo , Escherichia coli/metabolismo , Metotrexato/farmacologia , Peptídeo Hidrolases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Ribossomos/efeitos dos fármacos , Espectrometria de Fluorescência , Ureia/farmacologia
13.
Proc Natl Acad Sci U S A ; 110(2): E123-31, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23251033

RESUMO

The HIV-1 Tat protein stimulates viral gene expression by recruiting human transcription elongation complexes containing P-TEFb, AFF4, ELL2, and ENL or AF9 to the viral promoter, but the molecular organization of these complexes remains unknown. To establish the overall architecture of the HIV-1 Tat elongation complex, we mapped the binding sites that mediate complex assembly in vitro and in vivo. The AFF4 protein emerges as the central scaffold that recruits other factors through direct interactions with short hydrophobic regions along its structurally disordered axis. Direct binding partners CycT1, ELL2, and ENL or AF9 act as bridging components that link this complex to two major elongation factors, P-TEFb and the PAF complex. The unique scaffolding properties of AFF4 allow dynamic and flexible assembly of multiple elongation factors and connect the components not only to each other but also to a larger network of transcriptional regulators.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , HIV-1 , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação/genética , Western Blotting , Dicroísmo Circular , Ciclina T/metabolismo , Eletroforese , Escherichia coli , Células HeLa , Humanos , Imunoprecipitação , Luciferases , Complexos Multiproteicos/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Repressoras/genética , Fatores de Elongação da Transcrição/genética
14.
Proc Natl Acad Sci U S A ; 108(39): 16247-52, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21918110

RESUMO

Modern protein crystal structures are based nearly exclusively on X-ray data collected at cryogenic temperatures (generally 100 K). The cooling process is thought to introduce little bias in the functional interpretation of structural results, because cryogenic temperatures minimally perturb the overall protein backbone fold. In contrast, here we show that flash cooling biases previously hidden structural ensembles in protein crystals. By analyzing available data for 30 different proteins using new computational tools for electron-density sampling, model refinement, and molecular packing analysis, we found that crystal cryocooling remodels the conformational distributions of more than 35% of side chains and eliminates packing defects necessary for functional motions. In the signaling switch protein, H-Ras, an allosteric network consistent with fluctuations detected in solution by NMR was uncovered in the room-temperature, but not the cryogenic, electron-density maps. These results expose a bias in structural databases toward smaller, overpacked, and unrealistically unique models. Monitoring room-temperature conformational ensembles by X-ray crystallography can reveal motions crucial for catalysis, ligand binding, and allosteric regulation.


Assuntos
Conformação Proteica , Cristalografia por Raios X , Modelos Moleculares , Proteínas/química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...