Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746177

RESUMO

Pyoderma gangrenosum (PG) is a rare neutrophilic dermatosis causing chronic and recalcitrant painful ulcerations. Pathogenic mechanisms are yet poorly understood limiting therapeutic options, however, IL-12/IL-23 inhibition via ustekinumab has previously been associated with positive outcomes. We aimed to elucidate the dysregulated immune landscape of PG and lesional skin changes associated with IL-12/IL-23 blockade. We applied spatial transcriptomics and comparative computation analysis on lesional biopsies from two patients obtained before and after IL-12/IL-23 blockade with ustekinumab. Our data indicate lesional PG skin exhibits complex patterns of inflammation, including a not previously described major infiltration of B cells and establishment of tertiary lymphoid structures. In both patients, IL-12/IL-23 blockade led to marked clinical improvement but was associated with amelioration of contrasting inflammatory pathways. Notably, plasma cell markers and tertiary structures were recalcitrant to the treatment regime suggesting that B cells might play a role in the refractory nature of PG.

2.
Front Immunol ; 14: 1162905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081897

RESUMO

Augmenting adaptive immunity is a critical goal for developing next-generation cancer therapies. T and B cells infiltrating the tumor dramatically influence cancer progression through complex interactions with the local microenvironment. Cancer cells evade and limit these immune responses by hijacking normal immunologic pathways. Current experimental models using conventional primary cells, cell lines, or animals have limitations for studying cancer-immune interactions directly relevant to human biology and clinical translation. Therefore, engineering methods to emulate such interplay at local and systemic levels are crucial to expedite the development of better therapies and diagnostic tools. In this review, we discuss the challenges, recent advances, and future directions toward engineering the tumor-immune microenvironment (TME), including key elements of adaptive immunity. We first offer an overview of the recent research that has advanced our understanding of the role of the adaptive immune system in the tumor microenvironment. Next, we discuss recent developments in 3D in-vitro models and engineering approaches that have been used to study the interaction of cancer and stromal cells with B and T lymphocytes. We summarize recent advancement in 3D bioengineering and discuss the need for 3D tumor models that better incorporate elements of the complex interplay of adaptive immunity and the tumor microenvironment. Finally, we provide a perspective on current challenges and future directions for modeling cancer-immune interactions aimed at identifying new biological targets for diagnostics and therapeutics.


Assuntos
Neoplasias , Animais , Humanos , Neoplasias/patologia , Microambiente Tumoral
3.
iScience ; 23(8): 101433, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32823063

RESUMO

The anti-inflammatory actions of interleukin-10 (IL10) are thought to be mediated primarily by the STAT3 transcription factor, but pro-inflammatory cytokines such as interleukin-6 (IL6) also act through STAT3. We now report that IL10, but not IL6 signaling, induces formation of a complex between STAT3 and the inositol polyphosphate-5-phosphatase SHIP1 in macrophages. Both SHIP1 and STAT3 translocate to the nucleus in macrophages. Remarkably, sesquiterpenes of the Pelorol family, which we previously described as allosteric activators of SHIP1 phosphatase activity, could induce SHIP1/STAT3 complex formation in cells and mimic the anti-inflammatory action of IL10 in a mouse model of colitis. Using crystallography and docking studies we identified a drug-binding pocket in SHIP1. Our studies reveal new mechanisms of action for both STAT3 and SHIP1 and provide a rationale for use of allosteric SHIP1-activating compounds, which mimic the beneficial anti-inflammatory actions of IL10. VIDEO ABSTRACT.

4.
Prostate Cancer ; 2020: 5305306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802517

RESUMO

Interleukin-10 (IL10) is best studied for its inhibitory action on immune cells and ability to suppress an antitumour immune response. But IL10 also exerts direct effects on nonimmune cells such as prostate cancer epithelial cells. Elevated serum levels of IL10 observed in prostate and other cancer patients are associated with poor prognosis. After first-line androgen-deprivation therapy, prostate cancer patients are treated with androgen receptor antagonists such as enzalutamide to inhibit androgen-dependent prostate cancer cell growth. However, development of resistance inevitably occurs and this is associated with tumour differentiation to more aggressive forms such as a neuroendocrine phenotype characterized by expression of neuron specific enolase and synaptophysin. We found that treatment of prostate cancer cell lines in vitro with IL10 or enzalutamide induced markers of neuroendocrine differentiation and inhibited androgen receptor reporter activity. Both also upregulated the levels of PDL1, which could promote tumour survival in vivo through its interaction with the immune cell inhibitory receptor PD1 to suppress antitumour immunity. These findings suggest that IL10's direct action on prostate cancer cells could contribute to prostate cancer progression independent of IL10's suppression of host immune cells.

5.
PLoS One ; 15(4): e0230427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240179

RESUMO

Macrophage cells form part of our first line defense against pathogens. Macrophages become activated by microbial products such as lipopolysaccharide (LPS) to produce inflammatory mediators, such as TNFα and other cytokines, which orchestrate the host defense against the pathogen. Once the pathogen has been eradicated, the activated macrophage must be appropriately deactivated or inflammatory diseases result. Interleukin-10 (IL10) is a key anti-inflammatory cytokine which deactivates the activated macrophage. The IL10 receptor (IL10R) signals through the Jak1/Tyk2 tyrosine kinases, STAT3 transcription factor and the SHIP1 inositol phosphatase. However, IL10 has also been described to induce the activation of the cyclic adenosine monophosphate (cAMP) regulated protein kinase A (PKA). We now report that IL10R signalling leads to STAT3/SHIP1 dependent expression of the EP4 receptor for prostaglandin E2 (PGE2). In macrophages, EP4 is a Gαs-protein coupled receptor that stimulates adenylate cyclase (AC) production of cAMP, leading to downstream activation of protein kinase A (PKA) and phosphorylation of the CREB transcription factor. IL10 induction of phospho-CREB and inhibition of LPS-induced phosphorylation of p85 PI3K and p70 S6 kinase required the presence of EP4. These data suggest that IL10R activation of STAT3/SHIP1 enhances EP4 expression, and that it is EP4 which activates cAMP-dependent signalling. The coordination between IL10R and EP4 signalling also provides an explanation for why cAMP elevating agents synergize with IL10 to elicit anti-inflammatory responses.


Assuntos
Dinoprostona/metabolismo , Interleucina-10/farmacologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ocitócicos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Células RAW 264.7 , Receptores de Prostaglandina E Subtipo EP4/genética , Fator de Transcrição STAT3/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...