Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37112490

RESUMO

Traditional cuff-based sphygmomanometers for measuring blood pressure can be uncomfortable and particularly unsuitable to use during sleep. A proposed alternative method uses dynamic changes in the pulse waveform over short intervals and replaces calibration with information from photoplethysmogram (PPG) morphology to provide a calibration-free approach using a single sensor. Results from 30 patients show a high correlation of 73.64% for systolic blood pressure (SBP) and 77.72% for diastolic blood pressure (DBP) between blood pressure estimated with the PPG morphology features and the calibration method. This suggests that the PPG morphology features could replace the calibration stage for a calibration-free method with similar accuracy. Applying the proposed methodology on 200 patients and testing on 25 new patients resulted in a mean error (ME) of -0.31 mmHg, a standard deviation of error (SDE) of 4.89 mmHg, a mean absolute error (MAE) of 3.32 mmHg for DBP and an ME of -4.02 mmHg, an SDE of 10.40 mmHg, and an MAE of 7.41 mmHg for SBP. These results support the potential for using a PPG signal for calibration-free cuffless blood pressure estimation and improving accuracy by adding information from cardiovascular dynamics to different methods in the cuffless blood pressure monitoring field.


Assuntos
Fotopletismografia , Análise de Onda de Pulso , Humanos , Pressão Sanguínea/fisiologia , Fotopletismografia/métodos , Análise de Onda de Pulso/métodos , Determinação da Pressão Arterial/métodos , Esfigmomanômetros
2.
Bioengineering (Basel) ; 9(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36134991

RESUMO

An important means for preventing and managing cardiovascular disease is the non-invasive estimation of blood pressure. There is particular interest in developing approaches that provide accurate cuffless and continuous estimation of this important vital sign. This paper proposes a method that uses dynamic changes of the pulse waveform over short time intervals and calibrates the system based on a mathematical model that relates reflective PTT (R-PTT) to blood pressure. An advantage of the method is that it only requires collecting the photoplethysmogram (PPG) using one optical sensor, in addition to initial non-invasive measurements of blood pressure that are used for calibration. This method was applied to data from 30 patients, resulting in a mean error (ME) of 0.59 mmHg, a standard deviation of error (SDE) of 7.07 mmHg, and a mean absolute error (MAE) of 4.92 mmHg for diastolic blood pressure (DBP) and an ME of 2.52 mmHg, an SDE of 12.15 mmHg, and an MAE of 8.89 mmHg for systolic blood pressure (SBP). These results demonstrate the possibility of using the PPG signal for the cuffless continuous estimation of blood pressure based on the analysis of calibrated changes in cardiovascular dynamics, possibly in conjunction with other methods that are currently being researched.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...