Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(14): 145101, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33321485

RESUMO

Targeted nanoparticle platforms designed to induce cell death by apoptosis can bypass the resistance mechanisms of cancer cells. With this in mind we have constructed a new cancer-targeting peptide-functionalized nanoparticle using gold nanoparticles (AuNPs) and a thioctic acid-DMPGTVLP peptide (TA-peptide) conjugate. Morphological analysis of the nanoparticles by transmission electron microscopy showed average diameters of about 3.52 nm and 26.2 nm for the AuNP core and shell, respectively. Strong affinity toward the nucleolin receptors of breast cancer cell lines MCF-7 and T47D was observed for the TA-peptide gold nanoparticles (TAP@AuNPs) based on IC50 values. Furthermore, the nanoparticles showed excellent hemocompatibility. Quantitative results of atomic absorption showed improved uptake of TAP@AuNPs. Treatment of the cells with TAP@AuNPS resulted in greater release of cytochrome c following caspase-3/7 activation compared with free TA-peptide. The cytosolic level of adenosine triphosphate for TAP@AuNPs was higher than in controls. Higher anti-tumor efficiency was observed for TAP@AuNPs than TA-peptide compared with phosphate-buffered saline after intratumoral injection in tumor-bearing mice. It can be concluded that the design and development of a receptor-specific peptide-AuNP platform will be valuable for theranostic applications in cancer nanomedicine.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ouro/química , Nanopartículas Metálicas/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
2.
Pharm Nanotechnol ; 7(2): 90-112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30907329

RESUMO

Massive data available on cancer therapy more than ever lead our mind to the general concept that there is no perfect treatment for cancer. Indeed, the biological complexity of this disease is too excessive to be treated by a single therapeutic approach. Current delivery systems containing a specific drug or gene have their particular opportunities and restrictions. It is worth noting that a considerable number of studies suggest that single- drug delivery systems result in insufficient suppression of cancer growth. Therefore, one of the main ideas of co-delivery system designing is to enhance the intended response or to achieve the synergistic/combined effect compared to the single drug strategy. This review focuses on various strategies for co-delivery of therapeutic agents in the treatment of cancer. The primary approaches within the script are categorized into co-delivery of conventional chemotherapeutics, gene-based molecules, and plant-derived materials. Each one is explained in examples with the recent researches. In the end, a brief summary is provided to conclude the gist of the review.


Assuntos
Antineoplásicos , Nanocápsulas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Terapia Combinada/métodos , Sinergismo Farmacológico , Terapia Genética/métodos , Humanos , Terapia de Alvo Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...