Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(8)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37995365

RESUMO

This work investigates the mechanical deformation and fracture characteristics of pristine bundles of vertically aligned multi-walled carbon nanotubes (MWCNTs) subjected to axial compressionin situtransmission electron microscope (TEM). Accurate measurements of force-displacement data were collected simultaneously with real-time TEM videos of the deformation process. Two distinct regimes were observed in the force-displacement curve: (1) an initial elastic section with a linear slope, followed by (2) a transition to a force plateau at a critical buckling force. Morphological data revealed coordinated buckling of the pristine bundle, indicating strong van der Waals (VdW) forces between the nanotubes. The experimental setup measured an effective modulus of 83.9 GPa for an MWCNT bundle, which was in agreement with finite element analysis (FEA) simulations. FEA also highlighted the significant role of VdW forces in the bundle mechanical reactions. Furthermore, we identified nickel nanoparticles as key players in the fracture behavior of the bundles, acting as nucleation sites for defects. The direct mechanical measurements of MWCNT bundles provide valuable insights into their mechanical deformation and fracture behavior, while correlating it to the morphology of the bundle. Understanding these interactions at the bundle level is crucial for improving the reliability and durability of VACNTs-based components.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678054

RESUMO

Carbon nanotubes (CNTs) are extremely conductive and flexible, making them ideal for applications such as flexible electronics and nanoelectromechanical systems. However, in order to properly apply them in such devices, their long-term durability must be assessed. In the present study, we demonstrate cyclic loading of a thick MWCNT (175 nm) under axial compression, observed in situ under a transmission electron microscope (TEM). The force was applied via controlled displacement, while real-time TEM videos of the deformation process were gathered to produce the morphological data. The in situ observations combined with force-displacement curves revealed the onset of buckling instabilities, and the elastic limits of the tube were assessed. The MWCNT retained its original structure even after 68 loading-unloading cycles, despite observed clues for structural distortions. The stiffness of the tube, calculated after each loading cycle, was in a 0.15 to 0.28 TPa range-comparable to the literature, which further validates the measurement set-up. These in situ tests demonstrate the resilience of CNTs to fatigue which can be correlated with the CNTs' structure. Such correlations can help tailoring CNTs' properties to specific applications.

3.
Polymers (Basel) ; 13(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34451179

RESUMO

Focused Ion Beam (FIB) is one of the most common methods for nanodevice fabrication. However, its implications on mechanical properties of polymers have only been speculated. In the current study, we demonstrated flexural bending of FIB-milled epoxy nanobeam, examined in situ under a transmission electron microscope (TEM). Controllable displacement was applied, while real-time TEM videos were gathered to produce morphological data. EDS and EELS were used to characterize the compositions of the resultant structure, and a computational model was used, together with the quantitative results of the in situ bending, to mechanically characterize the effect of Ga+ ions irradiation. The damaged layer was measured at 30 nm, with high content of gallium (40%). Examination of the fracture revealed crack propagation within the elastic region and rapid crack growth up to fracture, attesting to enhanced brittleness. Importantly, the nanoscale epoxy exhibited a robust increase in flexural strength, associated with chemical tempering and ion-induced peening effects, stiffening the outer surface. Young's modulus of the stiffened layer was calculated via the finite element analysis (FEA) simulation, according to the measurement of 30 nm thickness in the STEM and resulted in a modulus range of 30-100 GPa. The current findings, now established in direct measurements, pave the way to improved applications of polymers in nanoscale devices to include soft materials, such as polymer-based composites and biological samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...